Search Results

You are looking at 1 - 9 of 9 items for

  • Author: B. Kania x
Clear All Modify Search
Open access

A. Góral, K. Berent, M. Nowak and B. Kania

The study presents investigations of an influence of various direct current densities on microstructure, residual stresses, texture, microhardness and corrosion resistance of the nickel coatings electrodeposited from modified Watt’s baths. The properties of obtained coatings were compared to the nano-crystalline composite Ni/Al2O3 coatings prepared under the same plating conditions. The similarities and differences of the obtained coatings microstructures visible on both their surfaces and cross sections and determined properties were presented. The differences in the growth character of the Ni matrix and in the microstructural properties were observed. All electrodeposited Ni and Ni/Al2O3 coatings were compact and well adhering to the steel substrates. The thickness and the microhardness of the Ni and Ni/Al2O3 deposits increased significantly with the current density in the range 2 - 6 A/dm2. Residual stresses are tensile and they reduced as the current density increased. The composite coatings revealed better protection from the corrosion of steel substrate than pure nickel in solution 1 M NaCl.

Open access

B.F. Kania, B. Dębski, D. Wrońska and E. Zawadzka

Abstract

Verapamil is a L-type voltage gated calcium channels inhibitor (VGCCI), which is a highly prescribed drug used in the treatment of hypertension, angina pectoris, cardiac arrhythmia and cluster headaches. Its common use caused its appearance in water environment. VGCC inhibit epinephrine release and cause many neuro-hormonal changes influencing also fish behavior. Siamese fighting fish was chosen to study the influence of verapamil given to the water on the beginning of experiment in 3 different concentrations of 0 (control), 8 and 160 μg · L−1, on aggressive behavior in these fish. The experimental fish were placed in individual glass containers for 3 weeks and the mirror test was used. The highest concentration led to a significant modulation of fish behavior after 1 week and the lower dose caused statistically significant behavioral changes after 2 weeks of verapamil treatment. Siamese fighting fish males exposed to verapamil had longer latencies to the first chase – 12.6 s (8 μg · L−1 of verapamil) and 18.8 s (160 μg · L−1 of verapamil) compared to 5.6 s in the control group, decreased attack frequency and shorter duration of these attacks. The number of attacks within 10 min was decreased from 38.3 in the control group to 27.1 and 16.1, respectively. Also the total duration of these attacks decreased from 354.8 (control) to 326.4 (decrease statistically insignificant) and to 194.8 s in verapamil treated groups. It was shown, that even relatively low concentrations of verapamil in water may have adverse effects on fish and probably other living organisms.

Open access

W. Wołczyński, T. Okane, C. Senderowski, B. Kania, D. Zasada and J. Janczak-Rusch

Meta-Stable Conditions of Diffusion Brazing

A thermodynamic justification for the joint formation is developed on the basis of the diffusion brazing of the Ni/Al/Ni system. The phenomena of dissolution and solidification were included into the description. The first solid/solid transformation is also discussed. Mainly, a description for the isothermal brazing occurrence in the meta-stable conditions is developed. It involves the application of the criterion of higher temperature of the solid / liquid (s/l) interface. The dissolution of the filler metal in the substrate is described by the N 0 - solute concentration within the dissolution zone (liquid film) distinguished at the substrate surface. The selection of the N 0 - parameter by the dissolution is justified by the Thermocalc calculation of the Ni-Al phase diagram for meta-stable equilibrium. According to the model assumptions, the solidification is accompanied by partitioning or by undercooled peritectic reaction resulting in formation of the intermetallic phase. The average Al - solute concentration measured across some Al3Ni2/Al3Ni/Al3Ni2 joints confirms that the N 0 - solute concentration is conserved within the analyzed joint sub-layers. The Ni-Al phase diagram for meta-stable equilibrium referred to the solidification is also calculated by means of the Thermocalc Software. It allows locating the solidification path, s/l interface path and redistribution path onto the mentioned diagram. Superposition of both calculated phase diagrams is also given to show that the joint formation occurs cyclically under the meta-stable conditions.

Open access

W. Wołczyński, E. Guzik, W. Wajda, D. Jędrzejczyk, B. Kania and M. Kostrzewa

Cet in Solidifying Roll - Thermal Gradient Field Analysis

As the first step of simulation, a temperature field for solidifying cast steel and cast iron roll was created. The convection in the liquid is not comprised since in the first approximation, the convection does not influence the analyzed occurrence of the C → E (columnar to equiaxed grains) transition (CET) in the roll. The obtained temperature field allows to study the dynamics of its behaviour observed in the middle of the mould thickness. This midpoint of the mould thickness was treated as an operating point for the C → E transition. A full accumulation of the heat in the mould was postulated for the C → E transition. Thus, a plateau at the T(t) curve was observed at the midpoint. The range of the plateau existence tC ↔ tE corresponded to the real period of transition, that occurs in the solidifying roll.

At the second step of simulation, the thermal gradients field was studied. Three ranges were distinguished:

a/ for the formation of the columnar structure (the C - zone):

The columnar structure formation was significantly slowed down during incubation period. It resulted from a competition between columnar growth and equiaxed growth expected at that period of time. The relationship was postulated to correspond well with the critical thermal gradient, Gcrit..

A simulation was performed for the cast steel and cast iron rolls solidifying as if in industrial condition. Since the incubation divides the roll into two zones (columnar and equiaxed) some experiments dealing with solidification were made on semi-industrial scale.

A macrosegregation equation for both mentioned zones was formulated. It was based on a recent equation for redistribution after back-diffusion. The role of the back-diffusion parameter was emphasized as a factor responsible for the redistribution in columnar structure and equiaxed structure.

Open access

P. Kwapisiński, A. A. Ivanova, B. Kania and W. Wołczyński

Abstract

An innovative method for determining the structural zones in the large static steel ingots has been described. It is based on the mathematical interpretation of some functions obtained due to simulation of temperature field and thermal gradient field for solidifying massive ingot. The method is associated with the extrema of an analyzed function and with its points of inflection. Particularly, the CET transformation is predicted as a time-consuming transition from the columnar- into equiaxed structure. The equations dealing with heat transfer balance for the continuous casting are presented and used for the simulation of temperature field in the solidifying virtual static brass ingot. The developed method for the prediction of structural zones formation is applied to determine these zones in the solidifying brass static ingot. Some differences / similarities between structure formation during solidification of the steel static ingot and virtual brass static ingot are studied. The developed method allows to predict the following structural zones: fine columnar grains zone, (FC), columnar grains zone, (C), equiaxed grains zone, (E). The FCCT-transformation and CET-transformation are forecast as sharp transitions of the analyzed structures. Similarities between steel static ingot morphology and that predicted for the virtual brass static ingot are described.

Open access

J.T. Bonarski, B. Kania, K. Bolanowski and A. Karolczuk

Abstract

The article presents the results of residual stress analysis in selected metal-metal joints manufactured by conventional welding and explosive merging. The X-ray diffraction technique applied for advanced stress-texture measurements and data processing revealed directions and values of the principal stresses and their configuration on the surface of the examined structural elements. The obtained stress topography of the joint intersections indicates a possible path of potential cracking formed during the exploitation process and thus it becomes a very useful tool in the diagnostics of structural elements.

Open access

D. Wrońska, B.F. Kania and M. Błachuta

Abstract

Stress causes the activation of both the hypothalamic-pituitary-adrenocortical axis and sympatho-adrenal system, thus leading to the release from the adrenal medulla of catecholamines: adrenaline and, to a lesser degree, noradrenaline. It has been established that in addition to catecholamines, the adrenomedullary cells produce a variety of neuropeptides, including corticoliberine (CRH), vasopressin (AVP), oxytocin (OXY) and proopiomelanocortine (POMC) – a precursor of the adrenocorticotropic hormone (ACTH). The aim of this study was to investigate adrenal medulla activity in vitro depending, on a dose of CRH, AVP and OXY on adrenaline and noradrenaline release. Pieces of sheep adrenal medulla tissue (about 50 mg) were put on 24-well plates and were incubated in 1 mL of Eagle medium without hormone (control) or supplemented only once with CRH, AVP and OXY in three doses (10−7, 10−8 and 10−9 M) in a volume of 10 μL. The results showed that CRH stimulates adrenaline and noradrenaline release from the adrenal medulla tissue. The stimulating influence of AVP on adrenaline release was visible after the application of the two lower doses of this neuropeptide; however, AVP reduced noradrenaline release from the adrenal medulla tissue. A strong, inhibitory OXY effect on catecholamine release was observed, regardless of the dose of this hormone. Our results indicate the important role of OXY in the inhibition of adrenal gland activity and thus a better adaptation to stress on the adrenal gland level.

Open access

P. Drzymała, B. Kania, M. Wróbel, P. Darłak, P. Długosz, P. Kwaśniewski and J. T. Bonarski

Magnesium alloys are the lightest structural materials, which makes them particularly suitable for use in the aircraft and automotive industry. However, due to hexagonal close-packed crystal structure, resulting in insufficient number of independent slip systems, magnesium alloys exhibit poor formability at room temperature. Conventional methods of work hardening of magnesium alloys requires the temperature about 300°C, which favours simultaneously processes of thermal recovery and grain growth, but decreases beneficial microstructure strengthening effect. Thus, it is a crucial to undertake development of a technology for semi-finished magnesium alloys elements, which will ensure better mechanical properties of the final products by forming desirable microstructure. In the paper we present the development of crystallographic texture of the Mg-based alloy (Mg-AZ31) in the form of pipe extruded at 430°C and subjected to pilger rolling at relatively low temperature.

Open access

W. Wołczyński, P. Kwapisiński, B. Kania, W. Wajda, W. Skuza and A.W. Bydałek

Abstract

A vertical cut at the mid-depth of the 15-ton forging steel ingot has been performed by curtesy of the CELSA - Huta Ostrowiec plant. Some metallographic studies were able to reveal not only the chilled undersized grains under the ingot surface but columnar grains and large equiaxed grains as well. Additionally, the structural zone within which the competition between columnar and equiaxed structure formation was confirmed by metallography study, was also revealed. Therefore, it seemed justified to reproduce some of the observed structural zones by means of numerical calculation of the temperature field. The formation of the chilled grains zone is the result of unconstrained rapid solidification and was not subject of simulation. Contrary to the equiaxed structure formation, the columnar structure or columnar branched structure formation occurs under steep thermal gradient. Thus, the performed simulation is able to separate both discussed structural zones and indicate their localization along the ingot radius as well as their appearance in term of solidification time.