Search Results

You are looking at 1 - 4 of 4 items for

  • Author: B. Grzegorczyk x
Clear All Modify Search
Open access

A. Grajcar, B. Grzegorczyk, M. Różański, S. Stano and M. Morawiec

Abstract

This work is concerned with comparative tests involving single-spot and twin-spot laser welding of thermomechanically rolled TRIP steel. The welding tests were carried out using keyhole welding and a solid state laser. In the case of twin-spot laser beam welding, the power distribution of beams was 50%:50%. The changes in macro- and microstructures were investigated using light and scanning electron microscopy. Three main zones subjected to the tests included the fusion zone, the heat affected zone and the intercritical heat affected zone (transition zone between the base material and the HAZ). Special attention was paid to the effect of various thermal cycles on the microstructure of each zone and on martensite morphology. The tests involved hardness measurements carried out in order to investigate the effect of different microstructures on mechanical properties of welds.

Open access

A. Grajcar, M. Różański, M. Kamińska and B. Grzegorczyk

Abstract

The work concerns the studies on non-metallic inclusions occuring in laser-welded Si-Al TRIP steel containing Nb and Ti microadditions. Laser welding tests of 2 mm thick thermomechanically rolled sheets were carried out using keyhole welding and a solid-state laser. The results of laser welding in the air atmosphere for the heat input value of 0.048 kJ/mm are included. The distribution, type and chemical composition of non-metallic inclusions formed in the base metal, heat-affected zone, and fusion zone are analysed in detail. It was found that the base metal contains rare, fine oxysulphides. Their chemical composition was modified by rare earth elements. Numerous oxide inclusions of a various size and a chemical composition occur in the fusion zone. The dependence between a size of particles and their chemical composition was observed. A microstructure of steel was assessed using light microscopy and scanning electron microscopy techniques.

Open access

W. Ozgowicz, B. Grzegorczyk, A. Pawełek, A. Piatkowski and Z. Ranachowski

Abstract

The paper presents the investigation of the relation between the acoustic emission (AE) and instability of plastic deformation type Portevin-Le Chatelier (PLC) of single-phase brass CuZn30 monocrystals with crystallographical orientation [1¯3 9]. The monocrystals have been investigated applying the method of free compression at a constant strain rate and the temperature within the range from 200°C to 400°C, simultaneously recording PLC phenomenon by means of acoustic emission. During hot axial compression tests the correlation between work-hardening curves σ - ε, which display PLC effect and characteristic of acoustic emission signals has been found. Moreover, it was proved that in the range of the PLC effect, the acoustic signal is an impulse a character of cyclic repeatability, distinctly correlated qualitatively with the stress oscillations on the curves σ - ε. The analysis of the obtained results leads to the conclusion that in the tested monocrystals the effect PLC is probably controlled by complex processes similar to the phenomenon of dynamic strain ageing (DSA), which are described by diffusion models.

Open access

A. Grajcar, B. Grzegorczyk and A. Kozłowska

Abstract

Corrosion resistance of the X4MnSiAlNbTi27-4-2 and X6MnSiAlNbTi26-3-3 type austenitic steels, after hot deformation as well as after cold rolling, were evaluated in 3.5% NaCl solution using potentiodynamic polarization tests. A type of nonmetallic inclusions and their pitting corrosion behaviour were investigated. Additionally, the effect of cold deformation on the corrosion resistance of high-Mn steels was studied. The SEM micrographs revealed that corrosion damage formed in both investigated steels is characterized by various shapes and an irregular distribution at the metallic matrix, independently on the steel state (thermomechanically treated or cold worked). Corrosion pits are generated both in grain interiors, grain boundaries and along the deformation bands. Moreover, corrosion damage is stronger in cold deformed steels in comparison to the thermomechanically treated specimens. EDS analysis revealed that corrosion pits preferentially nucleated on MnS and AlN inclusions or complex oxysulphides. The morphology of corrosion damage in 3.5% NaCl supports the data registered in potentiodynamic tests.