Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Aseel A. Kareem x
Clear All Modify Search
Open access

Aseel A. Kareem

Abstract

Polyimide/MWCNTs nanocomposites have been fabricated by solution mixing process. In the present study, we have investigated electrical conductivity and dielectric properties of PI/MWCNT nanocomposites in frequency range of 1 kHz to 100 kHz at different MWCNTs concentrations from 0 wt.% to 15 wt.%. It has been observed that the electrical conductivity and dielectric constants are enhanced significantly by several orders of magnitude up to 15 wt.% of MWCNTs content. The electrical conductivity increases as the frequency is increased, which can be attributed to high dislocation density near the interface. The rapid increase in the dielectric constant at a high MWCNTs content can be explained by the formation of a percolative path of the conducting network through the sample for a concentration corresponding to the percolation threshold. The high dielectric constant at a low frequency (1 kHz) is thought to originate from the space charge polarization mechanism. I-V characteristics of these devices indicate a significant increase in current with an increase in multi-walled carbon nanotube concentration in the composites. The SEM images show improved dispersion of MWCNTs in the PI matrix; this is due to the strong interfacial interactions.

Open access

Aseel A. Kareem

Abstract

Polyimide/polyaniline nanofiber composites were prepared by in situ polymerization with various weight percentages of polyaniline (PANI) nanofibers. X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), proved the successful preparation of PANI nanofiber composite films. In addition, thermal stability of PI/PANI nanofiber composites was superior relative to PI, having 10 % gravimetric loss in the range of 623 °C to 671 °C and glass transition temperature of 289 °C to 297 °C. Furthermore, the values of the loss tangent tanδ and AC conductivity σAC of the nanocomposite films were notably higher than those of pure polyimide. The addition of 5 wt.% to 15 wt.% PANI nanofiber filler enhanced the activation energy of PI composites from 0.37 eV to 0.34 eV.

Open access

Ikram Atta Al-Ajaj and Aseel A. Kareem

Abstract

In this research polyimide films were prepared by physical vapor deposition (PVD), using solid state reaction of pyromellitic dianhydride (PMDA) and p-phenylene diamine (PDA) to form poly(amic acid) (PAA) films. The resultant films were converted to polyimide by thermal treatment, usually below 300 °C. For this study, a FT-IR spectrometer has been used to measure the effect of imidization temperature on the chemical structure of the vapor-deposited thin films of aromatic PI. When temperature increased, an increase in all absorption peaks was observed. This suggests that residual PAA monomers continued to be converted into PI. The surface topology of the PI films obtained at imidization temperatures of 150, 200, 250 °C for 1 hour was further examined by using AFM atomic force microscopy. It can be clearly seen that the surface became rougher with increasing imidization temperature. The thermal stability of polyimide was also studied by using thermogravimetric analysis (TGA).