Search Results

1 - 1 of 1 items

  • Author: Artem Huslystyi x
Clear All Modify Search

Abstract

Growth of forest plantations on soils causes changes in their properties. These changes, their behavior, and magnitude depend on the original soil characteristics and also on the effect of forest plantations being grown. In the steppe zone of Ukraine, Robinia pseudoacacia L. and Quercus robur L. are the woody species most widely used in planting of forest plantations on chernozem soil. Chernozem soil formed exclusively under zonal steppe vegetation and chernozem soil under Robinia pseudoacacia and Quercus robur plantations were studied in this work to analyze the changes in soil properties caused by growth of these tree species. Dry aggregate size distribution, density, particle density, total porosity, organic carbon content, cation exchange capacity, pH values, hydrolytic soil acidity and dry residue, and the available nitrogen, phosphorus, and potassium content were analyzed. The studies found that Robinia pseudoacacia and Quercus robur plantations contribute to an increase in the share of aggregates 2–1 mm in size, as well as formation of aggregate fraction >10 mm, which are completely absent in the Calcic chernozem developed under the steppe vegetation. An increase in the density and particle density, as well as a decrease in the total porosity values were observed under the influence of forest stands studied. This is more common with chernozem under Q. robur plantation. It was found that the carbon percentage decreased in chernozem under the influence of Robinia pseudoacacia growth (on average, 0.4% by a meter-deep layer), but under Quercus robur planting it increased (on average 0.3% by meter-deep layer). Effect of Robinia pseudoacacia plantings on chernozem was also manifested by a decrease in cation exchange capacity (on average, 11 cmol/100 g by a meter-deep layer). The growth of R. pseudoacacia and Quercus robur plantations results in decrease of pH values (0.2 by a meter-deep layer) and increase of hydrolytic soil acidity and dry residue in chernozem water extract. Effect of Robinia pseudoacacia planting leads to a decrease in carbon, nitrogen, and phosphorus content in chernozem. The change in chernozem properties under the influence of Quercus robur plantation is reflected in accumulation of these nutrients. Growth of Robinia pseudoacacia and Quercus robur plantations leads to a decrease in potassium reserves in chernozem, which may indicate its active uptake by these woody species. In general, Q. robur planting is characterized by a large positive effect on the physical and chemical properties of chernozem than Robinia pseudoacacia planting. The findings obtained serve as a ground for making a recommendation for growing Quercus robur plantations under climate conditions of the steppe zone of Ukraine in order to improve the zonal chernozems’ state and fertility.