Search Results

You are looking at 1 - 8 of 8 items for

  • Author: Antonín Buček x
Clear All Modify Search
Open access

Hana Habrová and Antonín Buček

Abstract

The study describes main biotopes of Socotra Island. The biotopes were distinguished and described during complex field observations on more than 250 localities of Socotra between years 1999-2004. Classification of biotopes is based on differences in physiognomy, structure and species composition of the vegetation component of present biocoenoses. Groups of biotope types differ, above all, in the physiognomy and structure of vegetation. Biotope types are divided according to composition of dominant species. In this manner, 13 groups of biotopes and 39 biotope types were distinguished and described

Open access

Antonín Buček, Petr Maděra and Luboš Úradníček

Czech Approach to Implementation of Ecological Network

An ecological network in the landscape consists of all existing and proposed landscape segments of ecological significance that can contribute to the conservation of landscape biodiversity. The concept of creation of territorial systems of ecological stability applied in the Czech Republic corresponds to the latest landscape ecological knowledge and landscape planning procedures used abroad. Biocorridors interconnect biocentres thus enable migration, interactions and permeability of landscape for organisms. Unlike biocentres, they don't need to provide for a permanent existence of all species of the represented communities. Thanks to the interconnection of biocentres by means of biocorridors there is an ecological network forming in the landscape. Development of the local biocorridor Vracov and the regional biocorridor Věstonice in south Moravia is presented.

Open access

Antonín Buček, Hana Habrová, Petr Maděra, Kamil Král, Martin Modrý, Jan Lacina and Jindřich Pavliš

Abstract

Within the area of Central Europe, and especially in the Czech Republic (and former Czechoslovakia), geobiocoenological landscape differentiation has been applied for more than 40 years to create a spatial model of the natural (potential) condition of geobiocoenoses in the landscape. Because long-term objective of geobiocoenology is to contribute to the creation of harmonic cultural landscape by gradual development of a comprehensive system of groundworks for sustainable landscape use, and as Mendel University experts work in various countries, adaptions of geobiocoenology were used also outside Europe, in tropical areas. Examples of such a work could be shown on islands such as Socotra (belonging politically to Yemen), Tasmania, and Cuba.

Open access

Veronika Vlčková, Antonín Buček, Ivo Machar, Tomáš Daněk, Vilém Pechanec, Jan Brus and Helena Kilianová

Abstract

Geobiocoenological landscape typology, which is used in landscape planning in the Czech Republic, includes vegetation zonation of the landscape. Vegetation zones are determined by climatic conditions. Changes in climatic conditions will probably be manifested in the shift of vegetation zones in the landscape. Mathematical geobiocoenological model of vegetation zonation of the landscape is based on the general ecological relationship between the current vegetation zonation and present climatic conditions and the assumption that this general relationship will be maintained in the future. The paper presents the application of the model using the example of the prediction of changes in climatic conditions for the Norway spruce (the first-generation of the model) and grapevine (the second-generation of the model) in the Czech Republic. In the case of the Norway spruce example, the model shows that the predicted changes in climatic conditions will prevent the cultivation of the spruce in the Czech Republic outside its natural range in mountainous areas. The results of the presented model for grapevine show significant enlargement of areas climatically suitable for growing grapes within the studied area.These examples demonstrate the potential for the application of geobiocoenological landscape typology in the modeling of the effects of climate change in the landscape.

Open access

Antonín Buček, Linda Černušáková, Michal Friedl, Martin Machala and Petr Maděra

Abstract

Ancient coppice woodlands are forest stands of coppice origin with a long-term continual development and preserved typical natural and historic elements of old coppices. Significant natural elements in ancient coppices include polycormons of coppice shoots, pollard trees, trees with holes, dendrotelms, reserved trees, ecotones, glades and significant plant and animal species. Significant historic elements of localities with ancient coppices include archaeological monuments, boundary ditches and walls, boundary stones, boundary trees, myths and legends, sacral objects, old roads and paths, technical objects and plough land remainders. The paper presents differentiation of assumptions for the occurrence of ancient coppices in the territory of the Czech Republic using the COPF coefficient and examples of results from basic regional inventory (Kuřim region) and detailed local survey (locality Lebeďák) of coppice-originated forests. The extinction of the phenomenon of ancient coppice woodlands would mean irreparable impoverishment of the natural and cultural heritage.

Open access

Petr Maděra, Tomáš Slach, Luboš Úradníček, Jan Lacina, Linda Černušáková, Michal Friedl, Radomír Řepka and Antonín Buček

Abstract

Ancient coppice woodlands are coppice-originated forest stands with a long-term continual development, and with the preserved typical natural and historic elements of old sprout forests. Prominent natural elements in the ancient coppice woodlands are namely old coppice stools. There is, in scientific literature, lack of information about features of ancient coppice stools. Therefore, our contribution aims to describe shape and form of ancient coppice stools, including the most important microhabitat of coppice woodlands – dendrothelms. Based on field survey of 20 localities of important coppice woodlands we recorded 135 ancient coppice stools of 13 tree species and a total of 80 dendrothelms in 9 tree species. Basic features of ancient coppice stools and dendrothlems were measured and evaluated.

Open access

Petr Maděra, Slach Tomáš, Luboš Úradníček, Jan Lacina, Linda Černušáková, Michal Friedl, Radomír Řepka and Antonín Buček

Abstract

Ancient coppice woodlands are coppice-originated forest stands with a long-term continual development, and with the preserved typical natural and historic elements of old sprout forests. Prominent natural elements in the ancient coppice woodlands are namely old coppice stools. There is, in scientific literature, lack of information about features of ancient coppice stools. Therefore, our contribution aims to describe shape and form of ancient coppice stools, including the most important microhabitat of coppice woodlands - dendrothelms. Based on field survey of 20 localities of important coppice woodlands we recorded 135 ancient coppice stools of 13 tree species and a total of 80 dendrothelms in 9 tree species. Basic features of ancient coppice stools and dendrothlems were measured and evaluated.

Open access

Ivo Machar, Karel Kirchner, Vilém Pechanec, Jan Brus, Helena Kiliánová, Lubomír Šálek and Antonín Buček

Abstract

The project of a canal connecting the three major Central European Rivers: the Danube, Oder and Elbe, is incorporated into a planned trans-European transport network system. Geographically, the course of the planned canal stretches into the territory of four Central European countries, predominantly that of the Czech Republic. The environmental impacts of the potential construction and operation of the Danube–Oder–Elbe (DOE) Canal is currently widely discussed by experts from various fields. This paper aims to assess some potential impacts of the canal on the alluvial landscapes in the Czech Republic. The method of geo-ecological assessment presented here applies GIS analyses at the larger landscape scale. The results of the geo-ecological assessment of potential impacts of the DOE Canal on the land-use of river floodplains, the fluvial dynamics of streams and the extent of their alluvial plains, and the quantified DOE Canal impact on protected areas and groundwater sources, are presented. The hydrological impact of the DOE Canal will affect a total of 1,975.4 km2 of river basins in the Czech Republic. The DOE Canal will affect 157 sites significant from the perspective of landscape and nature conservation, 7 nature parks and 113 existing water points which are used as groundwater sources. The results show that the most significant disruption of fluvial dynamics of the stream sediment regime would occur in the Protected Landscape Area of Litovelské Pomoraví. In general, the geo-ecological impact of the DOE Canal on the landscape will be very important.