Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Anna Karczewska x
Clear All Modify Search
Open access

Anna Karczewska and Cezary KabałA

Abstract

This paper discusses new regulations on the assessment of soil contamination and the principle rules for remediation of contaminated sites included in the Environmental Protection Act, amended in 2014., as well as in related implementing legislation of 2016. In place of soil quality standards and the requirement to bring soil to the state that meets the standards, the new rules of contamination assessment and new remediation criteria have been introduced, based on environmental risk assessment. Similar rules are becoming increasingly common in many countries. This article provides general knowledge on the principles for the assessment of environmental risks associated with soil contamination, taking into account its two fundamental aspects: human health risk and environmental risk. On this background, the paper presents the principles of the assessment on soil contamination contained in the Regulation 1395 (2016) of the Minister of the Environment, as well as the rules for the choice of remediation method and design of remedial actions that should be basically aimed to eliminate the risk to human health and the environment.

Open access

Bartosz Bandrowski, Anna Karczewska and Piotr Rozmej

Numerical solutions to integral equations equivalent to differential equations with fractional time

This paper presents an approximate method of solving the fractional (in the time variable) equation which describes the processes lying between heat and wave behavior. The approximation consists in the application of a finite subspace of an infinite basis in the time variable (Galerkin method) and discretization in space variables. In the final step, a large-scale system of linear equations with a non-symmetric matrix is solved with the use of the iterative GMRES method.

Open access

Leszek Gersztyn, Anna Karczewska and Bernard Gałka

Abstract

The aim of this study was to determine the impact of pH on arsenic solubility in soils heavily contaminated by the former arsenic industry. For the purpose of the study, three soil samples were collected from the area affected by ore processing in Złoty Stok. Soils differed in initial pH, calcium carbonate content, organic matter content and total arsenic concentration. The amounts of arsenic released from soils at various pH were measured using extraction tests, where soil samples were shaken with various doses of HCl and NaOH in the presence of 0.01 mol • dm−3 CaCl2 as the background solution. Arsenic solubility in soils was considerably low at neutral or slightly acidic pH and increased considerably in both strongly acidic and alkaline conditions. The importance of these effects for environmental risk was discussed.

Open access

Bernard Gałka, Cezary Kabała, Anna Karczewska, Józef Sowiński and Justyna Jakubiec

Abstract

The aim of the study was to determine whether long-term intensive cultivation that used variable ploughing and fertilisation technologies and schemes influences the differentiation of soil properties which may impact the results of growing experiments in a relatively small experimental field (0.1 ha). The field under study is located in Wrocław, in an agricultural experimental station that has been operating for more than 60 years. A transformation of rusty gleyic soils (Brunic Gleyic Arenosols) into anthropogenic black earths (Gleyic Phaeozems (Arenic)) was noticed. The content of organic carbon and nitrogen, pH and the content of exchangeable base cations in the plough layer were positively (statistically and spatially) correlated and their increased values were observed in soils with a deeper and darker plough level. The present differentiation of the physical and chemical properties of soils in the experimental field do not result from such primary soil-forming factors as a kind and texture of parent material, topography, moisture regime, or (micro-)climatic conditions, which are not differentiated within the field, but from various intensity of former cultivation on individual sections of the experimental field. The variability cśfficient of the crucial soil properties was found to exceed 30%, which might significantly influence the results of micro-plot vegetation experiments.

Open access

Katarzyna Szopka, Cezary Kabała, Anna Karczewska, Paweł Jezierski, Adam Bogacz and Jarosław Waroszewski

Abstract

Differentiation of soil organic carbon (SOC) concentrations and pools in topsoil horizons of forest soils in the Karkonosze Mountains was examined in relation to environmental and human-induced factors, with special focus on altitudinal gradient, related climatic conditions, and a zonality of vegetation. The samples were collected from the forest litter and soil layers 0–10 cm and 10–20 cm, in 621 plots arranged in a regular network of monitoring established in the Karkonosze National Park. The concentrations of SOC were determined in laboratory and used for calculation of SOC pools. Four elevation zones were distinguished for analysis: 500–750 m, 750–1000 m, 1000–1250 m, and >1250 m. The concentrations of SOC in forest litter (38.3–44.1%) showed an insignificant increasing trend with altitude. The concentrations of SOC in the layers 0–10 cm and 10–20 cm, were in a very broad range 0.27–47.6%, thus indicating a high differentiation, and also tended to insignificantly increase along with altitude. The largest share of accumulated SOC pools was proved to be present in the layer 0–10 cm, except for the highest zone >1250 m in which forest litter contains slightly larger amounts of SOC. The pools of SOC accumulated in the 20 cm thick topsoil and forest litter turned out to vary considerably (3.6–58.2 kg·m−2), but the mean values and medians in particular elevation zones fall in a narrow range 10.5–11.9 kg·m−2, close to the values reported from the Alps. The lack of statistical significance of reported tendencies was explained by a monitoring sites-oriented random soil sampling, i.e. in forest stands of various age, species-composition and degradation degree.

Open access

Anna Karczewska, Piotr Rozmej, Maciej Szczeciński and Bartosz Boguniewicz

Abstract

The finite element method (FEM) is applied to obtain numerical solutions to a recently derived nonlinear equation for the shallow water wave problem. A weak formulation and the Petrov–Galerkin method are used. It is shown that the FEM gives a reasonable description of the wave dynamics of soliton waves governed by extended KdV equations. Some new results for several cases of bottom shapes are presented. The numerical scheme presented here is suitable for taking into account stochastic effects, which will be discussed in a subsequent paper.