Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Anna Jarocińska x
Clear All Modify Search
Open access

Anna M. Jarocińska

Abstract

Natural vegetation is complex and its reflectance is not easy to model. The aim of this study was to adjust the Radiative Transfer Model parameters for modelling the reflectance of heterogeneous meadows and evaluate its accuracy dependent on the vegetation characteristics. PROSAIL input parameters and reference spectra were collected during field measurements. Two different datasets were created: in the first, the input parameters were modelled using only field measurements; in the second, three input parameters were adjusted to minimize the differences between modelled and measured spectra. Reflectance was modelled using two datasets and then verified based on field reflectance using the RMSE. The average RMSE for the first dataset was equal to 0.1058, the second was 0.0362. The accuracy of the simulated spectra was analysed dependent on the value of the biophysical parameters. Better results were obtained for meadows with higher biomass value, greater LAI and lower water content.

Open access

Monika Mierczyk, Bogdan Zagajewski, Anna Jarocińska and Roksana Knapik

Abstract

Based on laboratory, field and airborne-acquired hyperspectral data, this paper aims to analyse the dominant minerals and rocks found in the Polish Karkonosze Mountains. Laboratory spectral characteristics were measured with the ASD FieldSpec 3 spectrometer and images were obtained from VITO’s Airborne Prism EXperiment (APEX) scanner. The terrain is covered mainly by lichens or vascular plants creating significant difficulties for rock identification. However, hyperspectral airborne imagery allowed for subpixel classifications of different types of granites, hornfels and mica schist within the research area. The hyperspectral data enabled geological mapping of bare ground that had been masked out using three advanced algorithms: Spectral Angle Mapper, Linear Spectral Unmixing and Matched Filtering. Though all three methods produced positive results, the Matched Filtering method proved to be the most effective. The result of this study was a set of maps and post classification statistical data of rock distribution in the area, one for each method of classification.

Open access

Anna Jarocińska, Małgorzata Białczak and Łukasz Sławik

Abstract

Monitoring of trees in urban areas can be conducted using remote sensing, but should be supported by field measurements. The article aims to present the research method used to evaluate discolouration and defoliation of trees and tree damage in the city of Białystok in Poland. The analyses were done using AISA hyperspectral images. Field measurements encompassed determining the locations, species and levels of discolouration and defoliation of trees. Remote sensing indices of vegetation were calculated and correlated with the field-measured values of discolouration and defoliation. Based on that, values of discolouration and defoliation were calculated and evaluated against the field studies. The RMSE of the acquired data was around 16%. Using parameter values, a map of tree damage was drawn up. Based on the analysis, it can be stated that a significant number of trees is undamaged, although a large portion of the trees falls into the warning class.

Open access

Anna M. Jarocińska, Monika Kacprzyk, Adriana Marcinkowska-Ochtyra, Adrian Ochtyra, Bogdan Zagajewski and Koen Meuleman

Abstract

Information about vegetation condition is needed for the effective management of natural resources and the estimation of the effectiveness of nature conservation. The aim of the study was to analyse the condition of non-forest mountain communities: synanthropic communities and natural grasslands. UNESCO’s M&B Karkonosze Transboundary Biosphere Reserve was selected as the research area. The analysis was based on 40 field test polygons and APEX hyperspectral images. The field measurements allowed the collection of biophysical parameters - Leaf Area Index (LAI), fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and chlorophyll content - which were correlated with vegetation indices calculated using the APEX images. Correlations were observed between the vegetation indices (general condition, plant structure) and total area of leaves (LAI), as well as fraction of Absorbed Photosynthetically Active Radiation (fAPAR). The outcomes show that the non-forest communities in the Karkonosze are in good condition, with the synanthropic communities characterised by better condition compared to the natural communities.

Open access

Adriana Marcinkowska, Bogdan Zagajewski, Adrian Ochtyra, Anna Jarocińska, Edwin Raczko, Lucie Kupková, Premysl Stych and Koen Meuleman

Abstract

This research aims to discover the potential of hyperspectral remote sensing data for mapping mountain vegetation ecosystems. First, the importance of mountain ecosystems to the global system should be stressed due to mountainous ecosystems forming a very sensitive indicator of global climate change. Furthermore, a variety of biotic and abiotic factors influence the spatial distribution of vegetation in the mountains, producing a diverse mosaic leading to high biodiversity.

The research area covers the Szrenica Mount region on the border between Poland and the Czech Republic - the most important part of the Western Karkonosze and one of the main areas in the Karkonosze National Park (M&B Reserve of the UNESCO).

The APEX hyperspectral data that was classified in this study was acquired on 10th September 2012 by the German Aerospace Center (DLR) in the framework of the EUFAR HyMountEcos project. This airborne scanner is a 288-channel imaging spectrometer operating in the wavelength range 0.4-2.5 μm.

For reference patterns of forest and non-forest vegetation, maps (provided by the Polish Karkonosze National Park) were chosen. Terrain recognition was based on field walks with a Trimble GeoXT GPS receiver. It allowed test and validation dominant polygons of 15 classes of vegetation communities to be selected, which were used in the Support Vector Machines (SVM) classification. The SVM classifier is a type of machine used for pattern recognition. The result is a post classification map with statistics (total, user, producer accuracies, kappa coefficient and error matrix). Assessment of the statistics shows that almost all the classes were properly recognised, excluding the fern community. The overall classification accuracy is 79.13% and the kappa coefficient is 0.77. This shows that hyperspectral images and remote sensing methods can be support tools for the identification of the dominant plant communities of mountain areas.