Search Results

You are looking at 1 - 10 of 37 items for

  • Author: Andi Abeshi x
Clear All Modify Search
Open access

Elena Manara, Andi Abeshi and Matteo Bertelli

Abstract

MAGI is concerned with research and diagnosis of rare genetic diseases. It has been operating since 2006 in Italy and abroad. Today it has three centers in Italy, including a medical genetics laboratory specialized in next generation sequencing in Bolzano, a medical genetics laboratory specialized in MLPA in Rovereto (Trento) and a genetic diseases information center at San Felice del Benaco (Brescia). MAGI has also invested outside Italy, setting up non-profit genetics laboratories in countries such as Albania, Russia and in the near future, Kazakhstan.

Open access

Andi Abeshi, Francesca Fanelli, Tommaso Beccari, Munis Dundar, Benedetto Falsini and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for central areolar choroidal dystrophy (CACD). CACD is mostly inherited in an autosomal dominant manner. Transmission is rarely autosomal recessive. Overall prevalence is currently 1-9 per 100 000. CACD is caused by mutations in the PRPH2 and GUCY2D genes. Clinical diagnosis is based on clinical findings, ophthalmological examination, fluorescein angiography, electroretinography (showing cone dystrophy) and stereo fundus photography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alice Bruson, Tommaso Beccari, Munis Dundar, Lucia Ziccardi and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for Bietti crystalline dystrophy (BCD). The disease has autosomal recessive inheritance, a prevalence of 1 per 67 000, and is caused by mutations in the CYP4V2 gene. Clinical diagnosis is based on clinical findings, ophthalmological examination, electroretinography and optical coherence tomography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Carla Marinelli, Tommaso Beccari, Munis Dundar, Fabiana D’Esposito and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for enhanced S-cone syndrome (ESCS). The disease has autosomal recessive inheritance, a prevalence of less than one per million, and is caused by mutations in the NR2E3 gene. Clinical diagnosis is based on clinical findings, ophthalmological examination, electroretinography, color vision testing and optical coherence tomography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Francesca Fanelli, Tommaso Beccari, Munis Dundar, Fabiana D’Esposito and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Bardet- Biedl syndrome (BBS). The disease has autosomal recessive inheritance, a prevalence varying from one in 13 500 to one in 160 000, and is caused by mutations in the ARL6, BBIP1, BBS1, BBS2, BBS4, BBS5, BBS7, BBS9, BBS10, BBS12, CEP290, IFT172, IFT27, LZTFL1, MKKS, MKS1, NPHP1, SDCCAG8, TRIM32, TTC8 and WDPCP genes. The clinical diagnosis of BBS is based on four primary features or three primary features plus two secondary features. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alessandra Zulian, Tommaso Beccari, Munis Dundar, Lucia Ziccardi and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for cone rod dystrophies (CORDs). CORDs are caused by variations in the ABCA4, ADAM9, AIPL1, C8orf37, CACNA1F, CACNA2D4, CDHR1, CNGA3, CRX, DRAM2, GUCA1A, GUCY2D, HRG4, KCNV2, PDE6C, PITPNM3, POC1B, PROM1, PRPH2, RAB28, RAX2, RIMS1, RPGRIP1, RPGR SEMA4A, TTLL5 genes, with an overall prevalence of 1 per 40 000. Most genes have autosomal recessive inheritance; the others have autosomal dominant or X-linked recessive transmission. Clinical diagnosis is based on clinical findings, color vision testing, ophthalmological examination and electroretinography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Vincenza Precone, Tommaso Beccari, Munis Dundar, Benedetto Falsini and Matteo Bertelli

Abstract

Inherited eye diseases are a group of conditions with genetic and phenotypic heterogeneity. Advances in ocular genetic research have provided insights into the genetic basis of many eye diseases. Genetic and technological progress is improving the management and care of patients with inherited eye diseases. Diagnostic laboratories continue to develop strategies with high specificity and sensitivity that reduce the costs and time required for genetic testing. The introduction of next generation sequencing technologies has significantly advanced the identification of new gene candidates and has expanded the scope of genetic testing. Gene therapy offers an important opportunity to target causative genetic mutations. There are clinical trials of treatments involving vector-based eye gene therapies, and a significant number of loci and genes now have a role in the diagnosis and treatment of human eye diseases. Applied genetic technology heralds the development of individualized treatments, ushering ophthalmology into the field of personalized medicine. Many therapeutic strategies have demonstrated efficacy in preclinical studies and have entered the clinical trial phase. In this paper we review the topic of genetic testing in inherited eye diseases. We provide some background information about genetic counseling and genetic testing in ophthalmology and discuss how genetic testing can be helpful to patients and families with inherited eye diseases.

Open access

Andi Abeshi, Alessandra Zulian, Tommaso Beccari, Munis Dundar, Fabiana D’Esposito and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Stargardt macular dystrophy (STGD). STGD is mostly inherited in an autosomal recessive manner and rarely in an autosomal dominant manner, with an overall prevalence of 1-5 per 10 000 live births. It is caused by variations in the ABCA4, CNGB3, ELOVL4, PRPH2 and PROM1 genes. Clinical diagnosis is based on ophthalmological examination, fluorescein angiography, electroretinography, visual field testing, optical coherence tomography and color testing. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alice Bruson, Tommaso Beccari, Munis Dundar, Fabiana D’Esposito and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for X-linked juvenile retinoschisis (XJR). The disease has X-linked inheritance, a prevalence that varies from one in 5000 to one in 25000 males, and is caused by mutations in the RS1 gene. Clinical diagnosis is based on clinical findings, ophthalmological examination, electroretinography and optical coherence tomography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alice Bruson, Tommaso Beccari, Munis Dundar, Leonardo Colombo and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Usher syndrome (USH). USH is mostly transmitted in an autosomal recessive manner and is caused by variations in the ADGRV1, CDH23, CIB2, CLRN1, HARS, MYO7A, PCDH15, PDZD7, USH1C, USH1G, USH2A, WHRN genes. Prevalence is estimated to be 1:30,000. Clinical diagnosis is based on audiogram, vestibular tests, visual acuity test, fundus examination, color test, optical coherence tomography and electroretinography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.