Search Results

You are looking at 1 - 10 of 37 items for

  • Author: Andi Abeshi x
Clear All Modify Search
Open access

Elena Manara, Andi Abeshi and Matteo Bertelli

Abstract

MAGI is concerned with research and diagnosis of rare genetic diseases. It has been operating since 2006 in Italy and abroad. Today it has three centers in Italy, including a medical genetics laboratory specialized in next generation sequencing in Bolzano, a medical genetics laboratory specialized in MLPA in Rovereto (Trento) and a genetic diseases information center at San Felice del Benaco (Brescia). MAGI has also invested outside Italy, setting up non-profit genetics laboratories in countries such as Albania, Russia and in the near future, Kazakhstan.

Open access

Andi Abeshi, Carla Marinelli, Tommaso Beccari, Munis Dundar, Lucia Ziccardi and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for Sorsby’s fundus dystrophy (SFD). SFD is caused by variations in the TIMP3 gene. Prevalence is, currently unknown. SFD has autosomal dominant inheritance. Clinical diagnosis is based on clinical findings, color vision testing, optical coherence tomography, ophthalmological examination and electroretinography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Francesca Fanelli, Tommaso Beccari, Munis Dundar, Benedetto Falsini and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for central areolar choroidal dystrophy (CACD). CACD is mostly inherited in an autosomal dominant manner. Transmission is rarely autosomal recessive. Overall prevalence is currently 1-9 per 100 000. CACD is caused by mutations in the PRPH2 and GUCY2D genes. Clinical diagnosis is based on clinical findings, ophthalmological examination, fluorescein angiography, electroretinography (showing cone dystrophy) and stereo fundus photography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alice Bruson, Tommaso Beccari, Munis Dundar, Fabiana D’Esposito and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for X-linked juvenile retinoschisis (XJR). The disease has X-linked inheritance, a prevalence that varies from one in 5000 to one in 25000 males, and is caused by mutations in the RS1 gene. Clinical diagnosis is based on clinical findings, ophthalmological examination, electroretinography and optical coherence tomography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alice Bruson, Tommaso Beccari, Munis Dundar, Leonardo Colombo and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Usher syndrome (USH). USH is mostly transmitted in an autosomal recessive manner and is caused by variations in the ADGRV1, CDH23, CIB2, CLRN1, HARS, MYO7A, PCDH15, PDZD7, USH1C, USH1G, USH2A, WHRN genes. Prevalence is estimated to be 1:30,000. Clinical diagnosis is based on audiogram, vestibular tests, visual acuity test, fundus examination, color test, optical coherence tomography and electroretinography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alessandra Zulian, Tommaso Beccari, Munis Dundar, Leonardo Colombo and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Senior- Loken syndrome (SLSN). SLSN is inherited in an autosomal recessive manner, has a prevalence of one in a million, and is caused by variations in CEP164, CEP290, INVS, IQCB1, NPHP1, NPHP3, NPHP4, SDCCAG8, TRAF3IP1 and WDR19 genes. Clinical diagnosis is based on kidney (urine analysis, abdominal ultrasound, kidney function) and eye assessment (visual acuity test, fundus examination, refraction defects, color testing and electroretinography). The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Pamela Coppola, Tommaso Beccari, Munis Dundar, Leonardo Colombo and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Mendelian myopia (MM), a large and heterogeneous group of inherited refraction disorders. Variations in the SLC39A5, SCO2 and COL2A1 genes have an autosomal dominant transmission, whereas those in the LRPAP1, P3H2, LRP2 and SLITRK6 genes have autosomal recessive transmission. The prevalence of MM is currently unknown. Clinical diagnosis is based on clinical findings, family history, ophthalmological examination and other tests depending on complications. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Carla Marinelli, Tommaso Beccari, Munis Dundar, Lucia Ziccardi and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Norrie disease. The disease is caused by variations in the NDP gene. Its prevalence is currently unknown. Inheritance is X-linked recessive. Clinical diagnosis is based on clinical findings, color vision testing, optical coherence tomography, ophthalmological examination and electroretinography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Francesca Fanelli, Tommaso Beccari, Munis Dundar, Fabiana D’Esposito and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Bardet- Biedl syndrome (BBS). The disease has autosomal recessive inheritance, a prevalence varying from one in 13 500 to one in 160 000, and is caused by mutations in the ARL6, BBIP1, BBS1, BBS2, BBS4, BBS5, BBS7, BBS9, BBS10, BBS12, CEP290, IFT172, IFT27, LZTFL1, MKKS, MKS1, NPHP1, SDCCAG8, TRIM32, TTC8 and WDPCP genes. The clinical diagnosis of BBS is based on four primary features or three primary features plus two secondary features. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Pamela Coppola, Tommaso Beccari, Munis Dundar, Lucia Ziccardi and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Doyne honeycomb retinal dystrophy (DHRD). The disease has an autosomal dominant inheritance and is caused by variations in the EFEMP1 gene. There is insufficient data to establish the prevalence of DHRD. Clinical diagnosis is based on clinical findings, ophthalmological examination, electroretinography, fluorescein angiography and optical coherence tomography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.