Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Aliyeh Salehi x
Clear All Modify Search
Open access

Aliyeh Salehi, Sina Fallah, Reinhard W. Neugschwandtner, Bano Mehdi and Hans-Peter Kaul

Summary

Intercropping can increase crop growth and yield due to improved resource use efficiency. A two-year field experiment was performed in Shahrekord (Iran) to determine the effect of crop stand composition and fertilizer type on the productions of aboveground dry matter and growth parameters of fenugreek-buckwheat intercrops. Sole crops of fenugreek (F) and buckwheat (B) were compared to the three substitutive intercropping ratios (F:B = 2:1, 1:1 and 1:2). Crop stands were fertilized with chemical fertilizer or broiler litter. Fenugreek could produce in intercrops a similar amount of above-ground dry matter compared to its corresponding share on the sowing ratio. Contrary to that, buckwheat could produce in intercrops more above-ground dry matter than its share on the sowing ratio, especially with a low to medium share of buckwheat. Consequently, the intercrops with F:B (2:1) and F:B (1:1) had an above-ground dry matter yield advantage compared to the pure crop stands of both crops. Broiler litter was more effective in increasing the growth rates and thus the above-ground dry matter production compared to the chemical fertilizer. Thus, growing fenugreek and buckwheat in intercrops fertilized with broiler litter can be beneficial for increasing the biomass production in semiarid environments.

Open access

Aliyeh Salehi, Seyfollah Fallah and Ali Abasi Sourki

Abstract

Cattle manure has a high carbon/nitrogen ratio and may not decompose; therefore, full-dose application of urea fertilizer might improve biological properties by increasing manure decomposition. This study aimed to investigate the effect of combining cattle manure and urea fertilizer on soil CO2 flux, microbial biomass carbon, and dry matter accumulation during Nigella sativa L. (black cumin) growth under field conditions. The treatments were control, cattle manure, urea, different levels of split and full-dose integrated fertilizer. The results showed that integrated application of cattle manure and chemical fertilizer significantly increased microbial biomass carbon by 10%, soil organic carbon by 2.45%, total N by 3.27%, mineral N at the flowering stage by 7.57%, and CO2 flux by 9% over solitary urea application. Integrated application increased microbial biomass carbon by 10% over the solitary application and the full-dose application by 5% over the split application. The soil properties and growth parameters of N. sativa L. benefited more from the full-dose application than the split application of urea. Cattle manure combined with chemical fertilizer and the full-dose application of urea increased fertilizer efficiency and improved biological soil parameters and plant growth. This method decreased the cost of top dressing urea fertilizer and proved beneficial for the environment and medicinal plant health.