Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Alin Moldoveanu x
Clear All Modify Search
Open access

Oana Bălan, Alin Moldoveanu and Florica Moldoveanu

Abstract

The use of individualised Head Related Transfer Functions (HRTF) is a fundamental prerequisite for obtaining an accurate rendering of 3D spatialised sounds in virtual auditory environments. The HRTFs are transfer functions that define the acoustical basis of auditory perception of a sound source in space and are frequently used in virtual auditory displays to simulate free-field listening conditions. However, they depend on the anatomical characteristics of the human body and significantly vary among individuals, so that the use of the same dataset of HRTFs for all the users of a designed system will not offer the same level of auditory performance. This paper presents an alternative approach to the use on non-individualised HRTFs that is based on a procedural learning, training, and adaptation to altered auditory cues.We tested the sound localisation performance of nine sighted and visually impaired people, before and after a series of perceptual (auditory, visual, and haptic) feedback based training sessions. The results demonstrated that our subjects significantly improved their spatial hearing under altered listening conditions (such as the presentation of 3D binaural sounds synthesised from non-individualized HRTFs), the improvement being reflected into a higher localisation accuracy and a lower rate of front-back confusion errors.

Open access

Alin-Constantin Sava, Ioan-Liviu Piticari, Diana-Georgeta Nistoran and Cristian-Emil Moldoveanu

Abstract

It is known that the forces and shocks that occur during the firing process of a firearm induce vibrations to the barrel of the weapon and to the weapon as a whole. There are flexural, longitudinal, radial and torsional vibrations. The most important ones are considered to be the flexural or bending vibrations, especially the ones recorded in the muzzle section. This paper presents a method of recording the flexural vibrations of the barrel in the muzzle section of a 5,56mm automatic rifle and the influence of muzzle devices, using modern equipment (high speed cameras) and dedicated software.