Search Results

You are looking at 1 - 8 of 8 items for

  • Author: Alice Bruson x
Clear All Modify Search
Open access

Andi Abeshi, Alice Bruson, Tommaso Beccari, Munis Dundar, Fabiana D’Esposito and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for X-linked juvenile retinoschisis (XJR). The disease has X-linked inheritance, a prevalence that varies from one in 5000 to one in 25000 males, and is caused by mutations in the RS1 gene. Clinical diagnosis is based on clinical findings, ophthalmological examination, electroretinography and optical coherence tomography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alice Bruson, Tommaso Beccari, Munis Dundar, Leonardo Colombo and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for color vision deficiency (CVD). Deuteranopia affects 1 in 12 males and is inherited in an X-linked recessive manner. It is associated with variations in the OPN1LW (OMIM gene: 300822; OMIM disease: 303900) and OPN1MW (OMIM gene: 300821; OMIM disease: 303800) genes. Tritanopia has a prevalence of 1 in 10 000, is inherited in an autosomal dominant manner, and is related to variations in the OPN1SW (OMIM gene: 613522; OMIM disease: 190900) gene. Blue cone monochromatism has a prevalence of 1 in 100 000, is inherited in an X-linked recessive manner and is related to mutations in the OPN1LW (OMIM gene: 300822; OMIM disease: 303700) and OPN1MW (OMIM gene: 300821; OMIM disease: 303700) genes. Clinical diagnosis is based on clinical findings, ophthalmogical examination, family history, electroretingraphy, color vision testing and dark adaptometry. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alice Bruson, Tommaso Beccari, Munis Dundar, Fabiana D’Esposito and Matteo Bertelli

Abstract

We reviewed the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for non syndromic retinitis pigmentosa (NSRP). NSRP is determined by variations in the ABCA4, AGBL5, ARL2BP, ARL6, BBS2, BEST1, C2orf71, C8orf37, CA4, CDHR1, CERKL, CLRN1, CNGA1, CNGB1, CRB1, CRX, DHDDS, EYS, FAM161A, FSCN2, GUCA1B, HGSNAT, IDH3B, IFT140, IFT172, IMPDH1, IMPG2, KIZ, KLHL7, LRAT, MAK, MERTK, NEK2, NR2E3, NRL, OFD1, PDE6A, PDE6B, PDE6G, POMGNT1, PRCD, PROM1, PRPF3, PRPF31, PRPF4, PRPF6, PRPF8, PRPH2, RBP3, RDH12, RGR, RHO, RLBP1, ROM1, RP1, RP2, RP9, RPE65, RPGR, SAG, SEMA4A, SLC7A14, SNRNP200, SPATA7, TOPORS, TTC8, TULP1, USH2A, ZNF408 and ZNF513 genes. Its overall prevalence is 1 per 4000. It is mostly inherited in an autosomal recessive manner, fewer genes have autosomal dominant or X-linked recessive transmission. Clinical diagnosis is based on clinical findings, ophthalmological examination, best corrected visual acuity (BCVA), slit lamp biomicroscopy, fundus autofluorescence, electroretinography, color vision testing and optical coherence tomography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alice Bruson, Tommaso Beccari, Munis Dundar, Benedetto Falsini and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for optic atrophy (OA). OA is mostly inherited in an autosomal dominant manner, rarely in an autosomal recessive manner, with an overall prevalence of 3/100,000 live births. It is caused by mutations in the OPA1, OPA3 and TMEM126A genes. Clinical diagnosis is based on clinical findings, ophthalmological examination, OCT, visual evoked potentials (VEPs) and electroretinography. The genetic test is useful for confirming diagnosis, differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alice Bruson, Tommaso Beccari, Munis Dundar, Lucia Ziccardi and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for Bietti crystalline dystrophy (BCD). The disease has autosomal recessive inheritance, a prevalence of 1 per 67 000, and is caused by mutations in the CYP4V2 gene. Clinical diagnosis is based on clinical findings, ophthalmological examination, electroretinography and optical coherence tomography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Sandro Michelini, Mrco Cardone, Paolo Maltese, Alice Bruson, Alessandro Fiorentino and Matteo Bertelli

Abstract

Primary lymphedema can be familial (in which more than one member of the same family has a lymphedema phenotype), syndromic (in which lymphedema is one symptom of a complex clinical syndrome) or sporadic (in which an isolated family member has lymphedema). All types of lymphedema are determined by genetic alteration of one or more genes. Not all the genes involved are known.

Open access

Andi Abeshi, Alice Bruson, Tommaso Beccari, Munis Dundar, Leonardo Colombo and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Usher syndrome (USH). USH is mostly transmitted in an autosomal recessive manner and is caused by variations in the ADGRV1, CDH23, CIB2, CLRN1, HARS, MYO7A, PCDH15, PDZD7, USH1C, USH1G, USH2A, WHRN genes. Prevalence is estimated to be 1:30,000. Clinical diagnosis is based on audiogram, vestibular tests, visual acuity test, fundus examination, color test, optical coherence tomography and electroretinography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alice Bruson, Tommaso Beccari, Munis Dundar, Francesco Viola, Leonardo Colombo and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for Best vitelliform macular dystrophy (BVMD). BVMD is mostly inherited in an autosomal dominant manner (autosomal recessive transmission is rare). The overall prevalence is currently unknown. BVMD is caused by mutations in the BEST1 gene. Clinical diagnosis is based on clinical findings, ophthalmological examination, optical coherence tomography, electrooculography and electroretinography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.