Search Results

You are looking at 1 - 7 of 7 items for

  • Author: Alessandra Zulian x
Clear All Modify Search
Open access

Andi Abeshi, Alessandra Zulian, Tommaso Beccari, Munis Dundar, Benedetto Falsini and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for achromatopsia. The disease has autosomal recessive inheritance, a prevalence of 1/30000-1/50000, and is caused by mutations in the CNGB3, CNGA3, GNAT2, PDE6C, ATF6 and PDE6H genes. Clinical diagnosis is by ophthalmological examination, color vision testing and electrophysiological testing. Genetic testing is useful for confirming diagnosis and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alessandra Zulian, Tommaso Beccari, Munis Dundar, Lucia Ziccardi and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for cone rod dystrophies (CORDs). CORDs are caused by variations in the ABCA4, ADAM9, AIPL1, C8orf37, CACNA1F, CACNA2D4, CDHR1, CNGA3, CRX, DRAM2, GUCA1A, GUCY2D, HRG4, KCNV2, PDE6C, PITPNM3, POC1B, PROM1, PRPH2, RAB28, RAX2, RIMS1, RPGRIP1, RPGR SEMA4A, TTLL5 genes, with an overall prevalence of 1 per 40 000. Most genes have autosomal recessive inheritance; the others have autosomal dominant or X-linked recessive transmission. Clinical diagnosis is based on clinical findings, color vision testing, ophthalmological examination and electroretinography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alessandra Zulian, Tommaso Beccari, Munis Dundar, Fabiana D’Esposito and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Stargardt macular dystrophy (STGD). STGD is mostly inherited in an autosomal recessive manner and rarely in an autosomal dominant manner, with an overall prevalence of 1-5 per 10 000 live births. It is caused by variations in the ABCA4, CNGB3, ELOVL4, PRPH2 and PROM1 genes. Clinical diagnosis is based on ophthalmological examination, fluorescein angiography, electroretinography, visual field testing, optical coherence tomography and color testing. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alessandra Zulian, Tommaso Beccari, Munis Dundar, Leonardo Colombo and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Senior- Loken syndrome (SLSN). SLSN is inherited in an autosomal recessive manner, has a prevalence of one in a million, and is caused by variations in CEP164, CEP290, INVS, IQCB1, NPHP1, NPHP3, NPHP4, SDCCAG8, TRAF3IP1 and WDR19 genes. Clinical diagnosis is based on kidney (urine analysis, abdominal ultrasound, kidney function) and eye assessment (visual acuity test, fundus examination, refraction defects, color testing and electroretinography). The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alessandra Zulian, Tommaso Beccari, Munis Dundar, Lucia Ziccardi and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for Mendelian cataract (MC). MC is caused by variations in the AGK, BFSP1, BFSP2, CHMP4B, CRYAA, CRYAB, CRYBA1, CRYBA2, CRYBA4, CRYBB1, CRYBB2, CRYBB3, CRYGC, CRYGD, CRYGS, EPHA2, EYA1, FYCO1, FOXE3, FTL, GALK1, GCNT2, GJA3, GJA8, HSF4, LEMD2, LIM2, LSS, MAF, MIP, NHS, PITX3, PAX6, SIPA1L3, SLC16A12, TDRD7, UNC45B, VIM, VSX, and WFS1 genes. The overall prevalence of congenital forms is 71 per 100 000, whereas there is insufficient data to determine the prevalence of the juvenile and age-related forms. Clinical diagnosis is based on clinical findings, age of onset, family history, ophthalmological examination and slit-lamp examination. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alessandra Zulian, Tommaso Beccari, Munis Dundar, Fabiana D’Esposito and Matteo Bertelli

Abstract

We reviewed the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Refsum disease. The disease has autosomal recessive inheritance, unknown prevalence, and is caused by variations in PEX7 and PHYH genes. Clinical diagnosis is based on clinical findings, ophthalmological examination, electroretinography, optical coherence tomography and phytanic acid assay. The genetic test is useful for confirming diagnosis, for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alessandra Zulian, Tommaso Beccari, Munis Dundar, Francesco Viola, Elena Garoli, Leonardo Colombo and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for choroideremia (CHM). CHM is an inherited X-linked recessive disorder associated with variations in the CHM gene. The overall prevalence of CHM varies from 1 in 50 000 to 1 in 100 000. Clinical diagnosis is based on clinical findings, ophthalmological examination, visual field, fundus autofluorescence, optical coherence tomography and electroretinography. The genetic test is useful for confirming diagnosis and for differential diagnosis, couple risk assessment and access to clinical trials.