Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Aleksandra Henig x
Clear All Modify Search
Open access

Kacper Grodecki, Krzysztof Murawski, Aleksandra Henig, Krystian Michalczewski, Djalal Benyahia, Łukasz Kubiszyn and Piotr Martyniuk

Abstract

In this paper, we present experimental results of photoluminescence for series of InAs:Si heavily doped samples, with doping level varying from 1.6 × 1016 cm-3 to 2.93 × 1018 cm-3. All samples were grown using MBE system equipped with a valved arsenic cracker. The measurements were performed in the temperature range of 20 K to 100 K. Although the Mott transition in InAs appears for electron concentrations above 1014 cm-3, Burstein-Moss broadening of photoluminescence spectra presented in this article was observed only for samples with concentration higher than 2 × 1017 cm-3. For the samples with lower concentrations two peaks were observed, arising from the band gap and defect states. The intensity of the defect peak was found to be decreasing with increasing temperature as well as increasing concentration, up to the point of disappearance when the Burstein-Moss broadening was visible.

Open access

Piotr Martyniuk, Małgorzata Kopytko, Paweł Madejczyk, Aleksandra Henig, Kacper Grodecki, Waldemar Gawron and Jarosław Rutkowski

Abstract

The paper reports on a long-wave infrared (cut-off wavelength ~ 9 μm) HgCdTe detector operating under nbiased condition and room temperature (300 K) for both short response time and high detectivity operation. The ptimal structure in terms of the response time and detectivity versus device architecture was shown. The response time of the long-wave (active layer Cd composition, xCd = 0.19) HgCdTe detector for 300 K was calculated at a level of τs ~ 1 ns for zero bias condition, while the detectivity − at a level of D* ~ 109 cmHz1/2/W assuming immersion. It was presented that parameters of the active layer and P+ barrier layer play a critical role in order to reach τs ≤ 1 ns. An extra series resistance related to the processing (RS+ in a range 5−10 Ω) increased the response time more than two times (τs ~ 2.3 ns).