Search Results

1 - 4 of 4 items

  • Author: Ahsan Nazir x
Clear All Modify Search

Abstract

The aim of this study was to investigate the effect of knitting parameters on the moisture management and air permeability of the interlock fabrics. Samples were produced at two different knitting gauges, each with three different stitch lengths. It was found that the fabric mass per square metre increases by increasing machine gauge and decreasing the stitch length, whereas the fabric thickness and porosity increase at these settings. It was further concluded that the loosely knitted fabric samples with higher amount of entrapped air exhibit good air permeability but poor moisture management properties.

Abstract

Functionalization of textile fabrics with metal oxide nanoparticles can be used to add antibacterial and moisture management properties to them. Current work focuses on the development of these properties on polyester/cotton woven fabrics by treating them with zinc oxide nanoparticles for workwear and sportswear applications. Zinc oxide nanoparticles, prepared by sol-gel method, were applied on fabric samples, which were then tested for antibacterial and moisture management properties using standard test methods AATCC 147 with Staphylococcus aureus and AATCC 195, respectively. It was found that application of ZnO nanoparticles improved both these properties with smaller particle imparting larger effects on both of them.

Abstract

Cotton is one of the most commonly used fibres for making knitwear. Some of the limitations of pure cotton knits include their tendency to shrink, relatively limited durability, and poor wash and wear properties. In order to overcome these limitations knitwear are also produced from polyester and cotton blends, however, at the cost of reduction in comfort properties. The objective of this study was to improve the thermo-physiological comfort properties of knits made from polyester/cotton (P/C) blends through simple chemical and biological treatments. The specimens of P/C knits were subjected to treatments with caustic soda solutions and the cellulase enzymes. It was found that the air permeability and perspiration management properties of P/C knits can be significantly improved by appropriate caustic treatment. However, the biological treatment with cellulase enzymes is comparatively less effective in making any improvement in the thermo-physiological comfort properties of P/C knits.

Abstract

The aim of this study was to develop statistical models for predicting the air permeability and light transmission properties of woven cotton fabrics and determine the level of correlation between the two parameters. Plain woven fabrics were developed with different warp and weft linear densities, ends per inch and picks per inch. After desizing, scouring, bleaching, drying and conditioning, the air permeability and light transmission properties of the fabric samples were determined. Regression analysis results showed statistically significant effect of the fabric ends, picks and warp linear density on both the fabric air permeability and light transmission. Correlation analysis was performed to analyze the relation between the fabric air permeability and light transmission. A linear equation was also formulated to find the fabric air permeability through transmission of light intensity. A fitted line plot between the air permeability and light transmission exhibited significant correlation with R-sq. value of 96.4%. The statistical models for the prediction of fabric air permeability and light transmittance were developed with an average prediction error of less than 7%.