Search Results

1 - 10 of 11 items

  • Author: Agnieszka Dołhańczuk-Śródka x
Clear All Modify Search
The Use Of Pb-210 Isotope As An Indicator Of Pollutants’ Migration In The Environment

Abstract

Radioactive isotopes, both natural and artificial, present in the environment, may be convenient indicators that can be used to study many physical and chemical processes as well as the transport of pollutants in the ecosystem. The studies have shown that in identification of particulate matter emission sources a radioactive lead isotope (Pb-210) can be used. The Pb-210 increased activity concentration in the top soil layers suggests its current atmospheric deposition. This conclusion is confirmed by the results of the Principal Components Analysis, conducted using the measured radionuclide content in 0-30 cm deep soil layer samples.

Open access
Pb-210 Isotope as a Pollutant Emission Indicator / Izotop Pb-210 Jako Znacznik Emisji Zanieczyszczeń

Abstract

Passive biomonitoring using 210Pb was used in the paper to evaluate pollutant deposition. Well-developed epiphytic foliose lichens Hypogymnia physodes growing on spruce branches were used in the studies. The samples of mosses Pleurozium schreberi and soil (raw humus) were collected from the area around the tree from which the samples of lichens were collected. The studies have shown that it is possible to identify dust emission sources using a radioactive lead isotope (210Pb). The highest activity of 210Pb was observed in areas with increased deposition of other pollutants, such as Ni, Cd, Cu and Pb, which may indicate that 210Pb is one of the emission components

Open access
The Use of Moss Pleurozium schreberi (Brid.) Mitt. as Bioindicator of Radionuclide Contamination in Industrial Areas of Upper Silesia

Abstract

Mosses are good bioaccumulators of radionuclides and from the 60 of the last century, they are used as bioindicators of radioactive contamination in the environment. Concentration of impurities in moss represent the accumulation in mosses during the past 2-3 years. As a result, the moss composition analysis provides information on an average contamination within a few vegetation seasons. During our survey the measurements of radionuclide activity concentrations in P. schreberi transplanted from places relatively clean to heavily contaminated areas of Upper Silesia were carried out. An increase in the radionuclides activity concentrations in P. schreberi transplants may indicate not only deposition of the radionuclides itself, but also an influx of other pollutants. The results showed no relationship between the Pb-210 activity concentration and activity concentrations of Pb-214, Bi-214, also belonging to the uranium-radium decay series. The increased concentration of Pb-210 in P. schreberi may be the result of the radionuclide atmospheric deposition, which appears in the environment as a result of fossil fuels burning. Excess, allogeneic Pb-210 can be used as marker of environmental pollution. In the areas with its higher activity concentration increased pollution can be expected delivered, for example, by local industry. The Project received financial assistance from the funds of the National Science Centre, granted by force of the decision no. UMO-2013/09/B/NZ8/03340 (NCN).

Open access
Assessment of Gamma Dose Rate at Mine Waste Dump

Abstract

Exploitation of coal deposits in Upper Silesia is associated with production of large quantities of waste deposited at dumps. The tested samples from five dumps showed different radioactivity from each other. Radioactivity measurements made it possible to analyze the degree of risk with the factors specified by UNSCEAR such as radium equivalent activity Raeq, internal Ein and external Eex occupancy factor. There is a raised level of radiation in dumps as compared with outside dump areas. In the study area, however, there is no risk associated with elevated levels of radiation in relation to standards established by the Council of Ministers of the ionizing radiation dose limits.

Open access
Investigation of committed radiation dose rate and relationships between alkaline metals concentrations in mushroom Xerocomus badius / Badanie wchłoniętej, skutecznej dawki promieniowania i zależności pomiędzy stężeniami metali alkalicznych w owocnikach Xerocomus badius

Abstract

The fruiting bodies of fungi sprout from mycelium are capable of accumulating significant amounts of trace elements, both metals and metalloids. Content of these elements in fruiting bodies may exceed their concentration in the substrate where fungi develop. Among the elements the radioactive nuclides are also present. In this work health risk caused by increased radioactivity dose absorbed with Xerocomus badius bay bolete consumption was estimated. In analysis concentrations of radioactive isotopes 137Cs and 40K were taken into consideration. It was found that moderate ingestion of bay bolete does not create health risk due to increased radioactive substances intake. The amount of consumed mushrooms that could deliver the dose exceeding the safe one, is rather improbable in real life. Possible relationships between radioactive isotopes concentrations and concentrations of common alkali metals were investigated using methods designed for compositional data analysis. No clear relationships between 137Cs, Ca, K and Mg concentrations in samples of bay bolete were found and significant influence of outlying data points on statistical inference was noticed.

Open access
Modelling of Mercury Emissions from Large Solid Fuel Combustion and Biomonitoring in CZ-PL Border Region

Abstract

Tightening of norms for air protection leads to a development of new and significantly more effective techniques for removing particulate matter, SOx and NOx from flue gas which originates from large solid fuel combustion. Recently, it has been found that combinations of these environmental technologies can also lead to the reduction of mercury emissions from coal power plants. Now the greatest attention is paid especially to the coal power plant in Opatovice nad Labem, close to Hradec Kralove. Its system for flue gas dedusting was replaced by a modern type of cloth fabric filter with the highest particle separation efficiency which belongs to the category of BAT. Using this technology, together with modernization of the desulphurisation device and increasing of nitrogen oxides removal efficiency, leads also to a reduction of mercury emissions from this power plant. The University of Hradec Kralove, the Opole University and EMPLA Hradec Kralove successfully cooperate in the field of toxic metals biomonitoring almost 20 years. In the Czech-Polish border region, comprehensive biomonitoring of mercury in bioindicators Xerocomus badius in 9 long-term monitored reference points is done. The values of mercury concentration measured in 2012 and 2016 were compared with values computed by a dispersion model SYMOS′97 (updated 2014). Thanks to modern methods of dedusting and desulphurisation, emissions of mercury from this large coal power plant are now smaller than before and that the downward trends continues. The results indicate that Xerocomus badius is a suitable bioindicator for a long-term monitoring of changes in mercury imissions in this forested border region. This finding is significant because it shows that this region is suitable for leisure, recreation, and rehabilitation.

Open access
Innovative Educational Program for Biogas Production Carried Out at University of Hradec Králové (CZ) and at University of Opole (PL)

Abstract

Recently, there is a growing pressure on a rapid construction of agricultural biogas plants, particularly in the Czech-Polish border region. It is an area with large expanses of agricultural land which can serve to supply biogas plants with biomass. This strategy should contribute to harmonize the common agricultural policy of the European Union. A need for qualified operators of these stations on this territory is also increasing. Therefore we first include a demonstration of an education program for students in the field of agricultural waste anaerobic fermentation and biogas production. We present here the first part of an innovative approach which we use in the teaching program “Physico-technical Measurements and Computer Technology” at the Faculty of Science at the University of Hradec Kralove and also in the education of internshipers from the Faculty of Natural Sciences and Technology at the University of Opole. There are requirements to fulfil labour market expectations and to make this subject more attractive for the students. Students’ theoretical and practical preparation constitutes a comprehensive source of knowledge and skills required in a real life job. Joined theoretical and practical knowledge gained by students, reinforced by the skills developed during task analysis followed by their solution, provides the future graduate higher quality abilities and better position in the labour market.

Open access
Innovation in Study of Physical and Technical Measurements. Czech-Polish Cooperation of Universities / Innowacje Studiów Fizyczne I Techniczne Metody Pomiarowe. Czesko-Polska Współpraca Uniwersytetów

Abstract

In the Faculty of Science (University of Hradec Králové) the innovative program in chemistry for the study specialization Physico-technical Measurements and Computer Technology was developed. The innovation of chemistry filed study has been focused especially on increase in competitiveness and in graduates employment. Design of innovation enables graduates applying for the position of experts in physical measurements and informatics and at the same time they expand their competence in the service of the physico-chemical instrumentation in industrial ecology. Because Faculty of Science is not equipped yet in expensive instrumentation for nuclear spectrometry, cross-border cooperation with the Faculty of Natural and Technical Sciences (University of Opole) has been started. In the area of teaching about non-traditional energy sources the cross-border cooperation with the Department of Automation and Renewable Energy Sources, Faculty of Electrical Engineering (Czestochowa University of Technology) has been initiated. Well-developed system of cooperation with companies, which are equipped with the latest technology of environmental protection, was created. In the exchange system Polish students attended for practicing in these companies. The aim of the contribution is to describe one of the means of innovation of chemistry field study in the frame of bachelor study specialization oriented in physics and computer technology. We believe that the new approach will lead to increase in graduate competitiveness as well as to development of their motivation to study and better understanding of regulation principles of chemical processes and patterns.

Open access
Modelling of Emissions from Large Biogas Plants

Abstract

The main objective of the “Guidelines for the development of agricultural biogas plants in Poland within 2010-2020”, is a construction of biogas plants processing agricultural biomass resources with suitable conditions in each municipality. In the Czech Republic produces about 6.5% of energy from renewable sources. Biogas plants give - contrary to solar and wind electricity stations - the stable performance throughout the whole year. Biomass should be a key source for achieving the Czech EU commitment to produce 13% of energy from renewable sources in 2020. The experience, where 317 Agricultural biogas plants are currently in operation, has shown that there are considerable problems with a proper location of newly designed agricultural biogas plants in the landscape. The Czech-Polish border area is mainly flat wooded recreation region. For these reasons, the Gaussian model SYMOS’97 (version 2013), adapted for odour dispersion modelling from large agricultural sources is supposed to be suitable for this area. It is appropriate for training of students. For these reasons, students from the University of Hradec Kralove and the University of Opole in the frame of their academic exchange and professional internships are acquainted with the technological principles of biogas plants and in environmental mathematical and statistical modelling of the spread of emissions from large industrial and agricultural sources. In this article we present methods for education on these professional areas.

Open access
The Origin of Heavy Metals and Radionuclides Accumulated in the Soil and Biota Samples Collected in Svalbard, Near Longyearbyen

Abstract

Heavy metals and radioactive compounds are potentially hazardous substances for plants, animals and humans in the Arctic. A good knowledge of the spatial variation of these substances in soil and primary producers, and their sources, is therefore essential. In the samples of lichen Thamnolia vermicularis, Salix polaris and Cassiope tetragona, and the soil samples collected in 2014 in Svalbard near Longyearbyen, the concentrations of the following heavy metals were determined: Mn, Ni, Cu, Zn, Cd, Pb and Hg, as well as the activity concentrations of the following: K-40, Cs-137, Pb-210, Pb-212, Bi-212, Bi-214, Pb-214, Ac-228, Th-231 and U-235 in the soil samples. The differences in the concentrations of the analytes accumulated in the different plant species and soil were studied using statistical methods. Sea aerosol was indicated as the source of Pb, Hg, Cs-137, Pb-210 and Th-231 in the studied area. A relatively high concentration of nickel was determined in the biota samples collected near Longyearbyen, compared to other areas of Svalbard. It was supposed that nickel may be released into the atmosphere as a consequence of the local coal mining around Longyearbyen.

Open access