Search Results

1 - 5 of 5 items

  • Author: Agata Dudek x
Clear All Modify Search

Abstract

Nowadays, stainless steels are very interesting and promising materials with unique properties. They are characterized high mechanical strengths, high toughness and good corrosion resistance, so that can be used in many industrial sectors. An interesting alternative to steels obtained using the conventional methods is sintered stainless steel manufactured using the powder metallurgy technology. AISI 316L stainless steel is one of the best-known and widely used austenitic stainless steel. Modification of surface properties of stainless steels, in particular by applying the Cr3C2 coating is becoming more and more popular. The technique of atmospheric plasma spraying (APS) was used to deposit Cr3C2 - NiAl powder on stainless steel surface. In this study presents arc surface remelting of two types of stainless steel was used by GTAW method in order to improve function and usability these materials. The results of optical microscope metallographic, hardness and scratch test are presented. The main assumption for this study was to analyze the microstructure and hardness after remelting and alloying the surface of 316L steel (using GTAW method) with current intensity 50 A.

Abstract

Quality of the lighting columns plays a major role in the comfort and safety of life of road users. The surface quality of the materials used in the columns is especially critical during extreme weather conditions. Road infrastructure, including street lighting, uses modern lightweight materials from the group of non-ferrous materials or composites. The materials used in the manufacturing process ensure important advantages, such as durability, electrical safety, aesthetic qualities, low maintenance costs, light weight, and easy transport and assemble. This paper presents an analysis of the quality of coatings used for street lighting columns.

Abstract

The use of fluidized bed boilers in modern power engineering is a promising solution for clean and economically acceptable combustion of various fuels, including coal, biomass and waste, for the generation of electricity. The fluidized bed boilers are nowadays technically advanced and complex combustion facilities where all individual boiler elements are subjected to withstand continuous structural and thermal loads during their operation. Intensive loading of boiler elements can be quite easily linked with boiler operational safety and is quite often one of the main reasons for emergency shutdowns followed by necessary replacements of the damaged items. In case of industrial large-scale circulating fluidized bed boilers the frequency of unplanned shutdowns is also quite often affected by the hydrodynamics of the fluidized bed and some other parameters, such as the intensity of solids circulation, temperature, solids concentration, flue gas composition and velocity, solids accumulation and deposition, as well as the corrosion or erosion of heat transfer surfaces. The present paper briefly reports the results of authors investigation focused on the morphology and structure of some chosen elements (steel anchors) sampled from one of Polish circulating fluidized bed boilers. The anchors were degraded during boiler operation and lost their mechanical durability. In order to determine the reasons of anchors’ degradation chemical composition of the elements was determined with the use of a spark spectrometer SPECTROLAB and sample morphology was investigated with JEOL JSM-6610LV scanning microscope equipped with LaB6 cathode.

Abstract

Increasingly, many conventional and advanced automotive coatings applications demand materials with well-defined surface properties, fulfilling specific requirements and affecting automotive industrial development. The main assumption for the study was to analyze the microstructure and adhesion of epoxy powder coating on a steel substrate. The results of optical microscope metallographic, SEM/EDX, XRD analysis and adhesion test are presented.