Search Results

1 - 4 of 4 items

  • Author: Adriana Eštoková x
Clear All Modify Search
Comparison of Hexavalent Chromium Leaching Levels of Zeoliteand Slag-based Concretes

Abstract

In this experiment, the reference concrete samples containing Portland cement as binder and the concrete samples with the addition of ground granulated blast furnace slag (85% and 95%, respectively as replacement of Portland cement) and other samples containing ground zeolite (8% and 13%, respectively as replacement of Portland cement) were analyzed regarding the leachability of chromium. The prepared concrete samples were subjected to long-term leaching test for 300 days in three different leaching agents (distilled water, rainwater and Britton-Robinson buffer). Subsequently, the concentration of hexavalent chromium in the various leachates spectrophotometrically was measured. The leaching parameters as values of the pH and the conductivity were also studied. This experiment clearly shows the need for the regulation and control of the waste addition to the construction materials and the need for long-term study in relation to the leaching of heavy metals into the environment.

Open access
Environmental Evaluation of Building Materials of 5 Slovak Buildings

Abstract

Building activity has recently led to the deterioration of environment and has become unsustainable. Several strategies have been introduced in order to minimize consumption of energy and resulting CO2 emissions having their origin in the operational phase. But also other stages of Life Cycle should are important to identify the overall environmental impact of construction sector. In this paper 5 similar Slovak buildings (family houses) were analyzed in terms of environmental performance of building materials used for their structures. Evaluation included the weight of used materials, embodied energy and embodied CO2 and SO2 emissions. Analysis has proven that the selection of building materials is an important factor which influences the environmental profile. Findings of the case study indicated that materials like concrete, ceramic or thermal insulation materials based on polystyrene and mineral wool are ones with the most negative environmental impact.

Open access
Investigation of the Precipitates on the Concrete Surface due to Sulphate Exposure

Abstract

The aim of this study is to investigate the durability of cement-based materials subjected to the effects of sulphuric acid in terms of surface deterioration. Damaged concrete surfaces and the samples’ mass changes were studied during 270-day simulation of both chemical and biological attacks. Chemical corrosion was simulated by sulphuric acid with pH of 3.0 and 4.0, respectively, while biological corrosion was simulated by activity of bacteria Acidithiobacillus thiooxidans. XRD and SEM analyses confirmed a massive sulphate precipitate formation on the concrete surface due to chemical and biological sulphate corrosion.

Open access
Study of Thermal Properties of Lightweight Insulation Made of Flax Straw

Abstract

The article presents the results of a study of the properties of flax straw as a raw material and as a lightweight, environmentally-friendly insulation made of a two-component mixture of flax straw and liquid glass. The flax is considered to be renewable and is a 100% natural waste product of the agriculture industry, which may be widely used as sustainable building insulation after light modifications. The ratio mixes of the two-component eco-insulation of flax straw and liquid glass (Na2O(SiO2)) have been developed in terms of sustainability principles such as environmental friendliness and energy efficiency. We used thermal analysis to compare flax straw as a raw material, and a complex insulation made of flax straw demonstrated a slower decomposition of the composite and shorter peaks, which supports the concept of the transformation of flax straw with liquid glass to increase its fire resistance properties. The peaks of the loss of mass with the exothermal process were defined for both flax samples. The thermal conductivity coefficient of the material is around 0.085 W/m K, which permits its use as an effective insulation material for sustainable buildings.

Open access