Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Adebola Abiodun Olufemi x
Clear All Modify Search
Open access

Babatunde Joseph Fagbohun, Oluwaseun Franklin Olabode, Abiodun Olufemi Adebola and Francis Omowonuola Akinluyi

Abstract

Identifying landscapes having comparable hydrological characteristics is valuable for the determination of dominant runoff process (DRP) and prediction of flood. Several approaches used for DRP-mapping vary in relation to data and time requirement. Manual approaches which are based on field investigation and expert knowledge are time demanding and difficult to implement at regional scale. Automatic GIS-based approach on the other hand require simplification of data but is easier to implement and it is applicable on a regional scale.

In this study, GIS-based automated approach was used to identify the DRPs in Anambra area. The result showed that Hortonian overland flow (HOF) has the highest coverage of 1508.3 km2 (33.5%) followed by deep percolation (DP) with coverage of 1455.3 km2 (32.3%). Subsurface flow (SSF) is the third dominant runoff process covering 920.6 km2 (20.4%) while saturated overland flow (SOF) covers the least area of 618.4 km2 (13.7%) of the study area. The result reveal that considerable amount of precipitated water would be infiltrated into the subsurface through deep percolation process contributing to groundwater recharge in the study area. However, it is envisaged that HOF and SOF will continue to increase due to the continuous expansion of built-up area. With the expected increase in HOF and SOF, and the change in rainfall pattern associated with perpetual problem of climate change, it is paramount that groundwater conservation practices should be considered to ensure continued sustainable utilization of groundwater in the study area.

Open access

Babatunde Joseph Fagbohun, Oluwaseun Franklin Olabode, Abiodun Olufemi Adebola and Francis Omowonuola Akinluyi

Abstract

Identifying landscapes having comparable hydrological characteristics is valuable for the determination of dominant runoff process (DRP) and prediction of flood. Several approaches used for DRP-mapping vary in relation to data and time requirement. Manual approaches which are based on field investigation and expert knowledge are time demanding and difficult to implement at regional scale. Automatic GIS-based approach on the other hand require simplification of data but is easier to implement and it is applicable on a regional scale.

In this study, GIS-based automated approach was used to identify the DRPs in Anambra area. The result showed that Hortonian overland flow (HOF) has the highest coverage of 1508.3 km2 (33.5%) followed by deep percolation (DP) with coverage of 1455.3 km2 (32.3%). Subsurface flow (SSF) is the third dominant runoff process covering 920.6 km2 (20.4%) while saturated overland flow (SOF) covers the least area of 618.4 km2 (13.7%) of the study area. The result reveal that considerable amount of precipitated water would be infiltrated into the subsurface through deep percolation process contributing to groundwater recharge in the study area. However, it is envisaged that HOF and SOF will continue to increase due to the continuous expansion of built-up area. With the expected increase in HOF and SOF, and the change in rainfall pattern associated with perpetual problem of climate change, it is paramount that groundwater conservation practices should be considered to ensure continued sustainable utilization of groundwater in the study area.

Open access

Fagbohun Babatunde Joseph, Olabode Oluwaseun Franklin and Adebola Abiodun Olufemi

Abstract

Identifying landscapes with similar hydrological characteristics is useful for the determination of dominant runoff process (DRP) and flood prediction. Several approaches used for DRP-mapping differ in respect to time and data requirement. Manual approaches based on field investigation and expert knowledge are time consuming and difficult to implement at regional scale. Automatic GIS-based approach on the other hand require simplification of data but are easier to implement and it is applicable on regional scale.

In this study, GIS-based automated approach was used to identify the DRPs in Anambra area. The result showed that Hortonian Overland Flow (HOF) has the highest coverage of 1508.3 Km2 (33.5%) followed by Deep Percolation (DP) with coverage of 1455.3 Km2 (32.3%). Subsurface Flow (SSF) is the third dominant runoff process covering 920.6 Km2 (20.4%) while Saturated Overland Flow (SOF) covers the least area of 618.4 Km2 (13.7%) of the study area. The result reveal that considerable amount of precipitated water would be infiltrated into the subsurface through deep percolation process contributing to groundwater recharge in the study area. However, it is envisaged that HOF and SOF will continue to increase due to the continuous expansion of built-up area. With the expected increase in HOF and SOF and the change in rainfall pattern associated with perpetual problem of climate change, it is paramount that groundwater conservation practices be considered to ensure continued sustainable utilization of groundwater in the study area.