Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Adam Szewczyk x
Clear All Modify Search
Open access

Beata Feledyn-Szewczyk, Krzysztof Jończyk and Adam Berbeć

Abstract

The aim of the study was to determine the relationship between morphological features and canopy parameters of winter wheat varieties and weed infestation. The 2-year-long field experiments were conducted at 3 locations, on 13 varieties of winter wheat cultivated on organic farms. The response of the tested cultivars to weed infestation was similar regardless of the location. The number of weeds did not differ significantly between the wheat varieties and was similar in all locations and years of the study (109-122 plants/m2). The weed dry matter was significantly lower in Chomentowo (38 g/m2) compared to Osiny and Chwałowice (66 and 85 g/ m2). Nateja and Legenda wheat varieties showed the biggest competitiveness against weeds in both years and locations, whereas Alcazar, Boomer and Jenga were characterized as having the least competitive ability. Natula, Kohelia, Batuta and Ostroga wheat varieties showed a different response to weed infestation over the years. The analysis of correlation and cluster analysis showed that wheat dry matter, plant density, and wheat height had the greatest impact on the number and dry matter of weeds. There was no significant correlation between number of tillers per plant and weed infestation parameters measured in the dough stage

Open access

Renata Knap, Janina Kaniuczak, Edmund Hajduk and Adam Szewczyk

Abstract

The aim of the study was to determine some physicochemical and chemical properties of post-mining soils reclaimed in different directions, after completed sulfur exploitation by means of the borehole (Frash) method. The study was conducted in 2013 in the former Sulfur Mine „Jeziórko” located on the Tarnobrzeg Plain between Tarnobrzeg and Stalowa Wola cities (Podkarpackie Voivodeship, south Poland). It covered an area of land reclaimed as the arable or forest land. The most important problems connected with sulfur exploitation was the occurrence of a layer of solid sulfur which was previously removed. During the reclamation process, embankments and excavations were leveled through replenishing large amounts of ground, post-flotation lime, mineral fertilizers, and sewage sludge. Moreover, studies upon degraded and non-reclaimed area (by 2013) were also carried out. Examined land was characterized by granulometric composition of sands, loamy sands, and sandy loams. Re-leveling of degraded land using post-flotation lime contributed to lower levels of acidification of reclaimed soil surface. The highest contents of organic carbon and total nitrogen were found in the surface layers of the soils studied. Content of available potassium ranged from very low to average. The soils were characterized by a high content of available magnesium in the surface layers of the profiles (maximum 71.8 mg·kg−1 in soil reclaimed as forest land), while below the Mg content was usually low. Contents of individual exchangeable cations could be lined up in a following decreasing sequence: Ca2+>Na+>K+>Mg2+ Referring to the topsoil, reclaimed soils were characterized by more favorable properties (pH close to neutral, lower acidity, higher sorption capacity, higher organic carbon, total nitrogen, and available forms of phosphorus, potassium, and magnesium concentrations) as compared to non-reclaimed soil.

Open access

Adam Szewczyk, Janina Kaniuczak, Edmund Hajduk and Renata Knap

Abstract

The aim of the study was to investigate the basic physicochemical and chemical properties of six soil profiles located in the surrounding of the Magura National Park (S Poland). The type of agricultural use and terrain relief were the main criteria for choosing the soil profiles. The research identified the following types or sub-types of soils: Eutric Gleysols, Dystric Cambisols, Eutric Cambisols, Gleyic Luvisols. The analyzed soils were characterized by particle size distribution of a silty clay or silt. They were usually strongly acidified as evidenced by low pH (in 1M KCl, values ranged from 3.8 to 5.8), high values of hydrolytic acidity (from 0.8 up to 10 cmol(+)·kg-1) and exchangeable acidity (from 0.05 to 4.05 cmol(+)·kg-1), as well as remarkable concentration of exchangeable aluminum (from 0 to 3.96 cmol(+)·kg-1). The organic carbon content in studied profiles did not exceed (except from gley soil in profile ) 30 g·kg-1 and it decreased along with the depth to several g·kg-1 in parent rock. These soils were characterized by not very high content of total nitrogen (from 0.3 to 9.39 g·kg-1) and low available phosphorus concentration (from 3.5 to 90.3 mg P2O5·kg-1). Contents of available potassium (from 82 to 570 mg K2O·kg-1) and magnesium (from 33 to 412 mg Mg·kg-1) allow for classifying the profiles studied as soils moderately or highly abundant in K and Mg. The highest levels of biogenic elements were determined in surface horizons. Studied soils were characterized by high total sorption capacity (T) - from 7.04 to 63.4 cmol(+)·kg-1. Sum of base cations (S) reached values from 3.01 to 61.2 cmol(+)·kg-1, which resulted in high base saturation (V) (maximum over 96%). The base saturations in profiles of the soils increased along with depth.

Open access

Peter Švec, Roman Szewczyk, Jacek Salach, Dorota Jackiewicz, Peter Šlvec, Adam Bieńkowski and Jozef Hoško

Abstract

Magnetoelastic properties of Fe6iCoigSÍ5Bi5 alloy after thermomagnetic treatment were tested for both compressive and tensile stresses, what is significant novelty. Results of presented investigation opens new ways of modelling the magnetoelastic effects in amorphous systems tailored by thermomagnetic treatment.