Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Adam Penczek x
Clear All Modify Search
Open access

Adam Kawa, Adam Penczek and Stanisław Piróg

Abstract

The paper treats about main problems of one phase DC-AC microinverters that allow single solar cell to be joined with the grid. One of the issues is to achieve high voltage gain with high efficiency in DC circuit, which is necessary for proper operation of inverter. The operating principles, results of practical implementation and investigations on boost-flyback converter, which meets mentioned demands, are presented. (high step-up DC-DC boost-flyback converter for single phase grid microinverter)

Open access

Robert Stala, Adam Penczek, Andrzej Mondzik and Łukasz Stawiarski

Abstract

This paper presents a novel, low-complexity method of simulating PV source characteristics suitable for real-time modeling and hardware implementation. The application of the suitable model of the PV source as well as the model of all the PV system components in a real-time hardware gives a safe, fast and low cost method of testing PV systems. The paper demonstrates the concept of the PV array model and the hardware implementation in FPGAs of the system which combines two PV arrays. The obtained results confirm that the proposed model is of low complexity and can be suitable for hardware in the loop (HIL) tests of the complex PV system control, with various arrays operating under different conditions.

Open access

Zbigniew Waradzyn, Robert Stala, Aleksander Skała, Andrzej Mondzik and Adam Penczek

Abstract

This paper presents the results of experimental research of a resonant switched capacitor voltage multiplier in a cost-effective topology (CESCVM) with a limited number of active switches. In the charging mode of the switched capacitors, the converter utilizes only one active switch and a required number of diodes. Therefore, the cost of the converter is decreased as compared with that of a classical SCVM converter, owing to a lower number of switches and gate driver circuits, as well as a smaller PCB area. Moreover, the CESCVM has simpler control circuits and higher reliability. This paper presents the original experimental results of the operation of the CESCVM converter. A concept of the bootstrap supply of gate drivers of the flying switches is also examined.