Search Results

You are looking at 1 - 9 of 9 items for

  • Author: Adam Glowacz x
Clear All Modify Search
Open access

Adam Glowacz

Abstract

A fault diagnostics system of three-phase induction motors was implemented. The implemented system was based on acoustic signals of three-phase induction motors. A feature extraction step was performed using SMOFS-20-EXPANDED (shortened method of frequencies selection-20-Expanded). A classification step was performed using 3 classifiers: LDA (Linear Discriminant Analysis), NBC (Naive Bayes Classifier), CT (Classification Tree). An analysis was carried out for incipient states of three-phase induction motors measured under laboratory conditions. The author measured and analysed the following states of motors: healthy motor, motor with one faulty rotor bar, motor with two faulty rotor bars, motor with faulty ring of squirrel-cage. Measured and analysed states were caused by natural degradation of parts of the machine. The efficiency of recognition of the analysed states was good. The proposed method of fault diagnostics can find application in protection of three-phase induction motors.

Open access

Adam Glowacz

Abstract

This paper proposes an approach based on acoustic signals for detecting faults appearing in synchronous motors. Acoustic signals of a machine were used for fault detection. These faults contained: broken coils and shorted stator coils. Acoustic signals were used to assess the usefulness of early fault diagnostic of synchronous motors. The acoustic signal recognition system was based on methods of data processing: normalization of the amplitude, Fast Fourier Transform (FFT), method of frequency selection (MoFS), backpropagation neural network, classifier based on words coding, and Nearest Neighbor classifier. A plan of study of acoustic signals of synchronous motors was proposed. Software of acoustic signal recognition of synchronous motors was implemented. Four states of a synchronous motor were used in analysis. A pattern creation process was carried out for 28 training samples of noise. An identification process was carried out for 60 test samples. This system can be used to diagnose synchronous motors and other electrical machines.

Open access

Adam Glowacz

Abstract

In industrial processes electrical motors are serviced after a specific number of hours, even if there is a need for service. This led to the development of early fault diagnostic methods. Paper presents early fault diagnostic method of synchronous motor. This method uses acoustic signals generated by synchronous motor. Plan of study of acoustic signal of synchronous motor was proposed. Two conditions of synchronous motor were analyzed. Studies were carried out for methods of data processing: Line Spectral Frequencies and K-Nearest Neighbor classifier with Minkowski distance. Condition monitoring is useful to protect electric motors and mining equipment. In the future, these studies can be used in other electrical devices.

Open access

Adam Glowacz

Abstract

An early fault diagnostic method of Direct Current motors was presented in this article. The proposed method used acoustic signals of a motor. A method of feature extraction called MSAF-RATIO30-EXPANDED (method of selection of amplitudes of frequencies - ratio 30% of maximum of amplitude - expanded) was presented and implemented. An analysis of proposed method was carried out for early fault states of a real DC motor. Four following states of the DC motor were measured and analyzed: the healthy DC motor, DC motor with 3 shorted rotor coils, DC motor with 6 shorted rotor coils, DC motor with a broken coil. Measured states were caused by natural degradation of the DC motor. The obtained results of analysis were good. The presented early fault diagnostic method can be used for protection of DC motors.

Open access

Adam Glowacz

Abstract

This article discusses a system of recognition of acoustic signals of loaded synchronous motor. This software can recognize various types of incipient failures by means of analysis of the acoustic signals. Proposed approach uses the acoustic signals generated by loaded synchronous motor. A plan of study of the acoustic signals of loaded synchronous motor is proposed. Studies include following states: healthy loaded synchronous motor, loaded synchronous motor with shorted stator coil, loaded synchronous motor with shorted stator coil and broken coil, loaded synchronous motor with shorted stator coil and two broken coils. The methods such as FFT, method of selection of amplitudes of frequencies (MSAF-5), Linear Support Vector Machine were used to identify specific state of the motor. The proposed approach can keep high recognition rate and reduce the maintenance cost of synchronous motors.

Open access

Adam Glowacz

Abstract

This paper focuses on testing the monitoring system of the Direct Current motor. This system gives the possibility of diagnosing various types of failures by means of analysis of acoustic signals. The applied method is based on a study of acoustic signals generated by the DC motor. A study plan of the DC motor’s acoustic signal was proposed. Studies were conducted for a faultless DC motor and Direct Current motor with 3 shorted rotor coils. Coiflet wavelet transform and K-Nnearest neighbor classifier with Euclidean distance were used to identify the incipient fault. This approach keeps the motor operating in acceptable condition for a long time and is also inexpensive.

Open access

Adam Glowacz, Andrzej Glowacz and Zygfryd Glowacz

Abstract

Infrared thermography can measure the temperature of a surface remotely. In this article authors present a diagnostic method of incipient fault detection. The proposed approach is based on pattern recognition. It uses monochrome thermal images of the rotor with the application of an area perimeter vector and a Bayes classifier. The investigations have been carried out for direct current motor without faults and motor with shorted rotor coils. The measurements were performed in the laboratory. The efficiency of recognition using the area perimeter vector and the Bayes classifier was 100 %. The investigations show that the method based on recognition of thermal images can be profitable for engineers. The proposed method can be applied in mining, metallurgy, fuel industry and in factories where electrical motors are used.

Open access

Anna Zwierzchowska, Ewa Sadowska-Krępa, Marta Głowacz, Aleksandara Mostowik and Adam Maszczyk

Abstract

The objectives of the present study were twofold: to determine differences between groups by means of chosen coefficients and to create significant predictors using regression models for athletes in wheelchair rugby who had the same spinal cord injury (tetraplegia) and were classified as low point and high point players. The study sample consisted of 24 subjects, who had sustained cervical spinal cord injury (CSCI). They were divided into low point (n=15) and high point (n=9) groups according to the IWRF Classification System. A one-way ANOVA revealed statistically significant differences in the following coefficients differentiating the groups: AC (η2=0.778), LC (η2=0.687), IC (η2=0.565), SC (η2=0.580). The Tukey’s HSD post-hoc test indicated statistically significant higher values of coefficients in the HP compared to the LP group: AC=0.958 (p=0.022), LC=0.989 (p=0.031), IC=0.971 (p=0.044), SC=0.938 (p=0.039). In the HP group, the most significant predictor was the sum of visceral and trunk fat which was negatively correlated with the SC (what constituted a positive adaptive change in response to training). With regard to the LP group, body height and circumference of the chest appeared to be most significant predictors and were positively correlated with the SC. In the LP group no predictor with respect to the SC was significantly correlated to sports training. Therefore, the functional classification system confirmed lower status of the LP players. The results of the present study indicate that both metabolic and somatic profiles which highly determine potential of wheelchair rugby athletes are significantly different in LP and HP players, what confirms the reliability of the functional classification system.

Open access

Miroslav Gutten, Daniel Korenciak, Matej Kucera, Richard Janura, Adam Glowacz and Eliasz Kantoch

Abstract

The authors describe experimental and theoretical analyses of faults of power transformer winding. Faults were caused by mechanical effect of short-circuit currents. Measurements of transformer were carried out in high-voltage laboratory. Frequency and time diagnostic methods (method SFRA - Sweep Frequency Response Analysis, impact test) were used for the analyses. Coils of transformer windings were diagnosed by means of the SFRA method and the time impact test. The analyzed methods had a significant sensitivity to a relatively small deformation of coil. In the analysis a new technique for analyzing the effects of short-circuit currents is introduced. This technique is developed for high-voltage transformers (different types of power). The proposed analyses show that it is necessary to analyze the value of short-circuit current. Short-circuit current represents a danger for the operation of the power transformer. The proposed approach can be used for other types of transformers. Moreover, the presented techniques have a potential application for fault diagnosis of electrical equipment such as: transformers and electrical machines.