Search Results

1 - 10 of 12 items

  • Author: Adam Bogacz x
Clear All Modify Search


Large-scale river regulation, drainage and intense farming in the Barycz valley initiated in 17th century activated a transformation of the initial alluvial and swamp-alluvial soils. Soils on the Holocene flooded terraces have deep, acid humus horizons (umbric) and gleyic properties at shallow depth, but have no stratification of parent material to a depth of 100 cm. Despite the location in the floodplain, soils cannot be classified as black-earth alluvial soils (mady czarnoziemne) using the criteria of Polish soil classification (2011). The soils on the Pleistocene non-flooded terraces have a deep, base-saturated humus horizon (mollic) and gleyic properties in the lower part of soil profile, which allows to classify them as the black earths (czarne ziemie). Prominent stratification of the parent material well preserved in these soils has no influence on their classification (due to the age sediments). Almost all humus horizons of these soils meet the definition of anthric characteristics, and more than half of the studied soils can be classified as culturozemic soils - rigosols - which emphasises the important role of man in the transformation and gaining of morphological features of these soils. The lack of precise criteria for identifying soil types in the chernozemic order of the Polish soil classification (2011) causes difficulties in the classification of soils on the river terraces, in particular, in distinguishing between black-earth alluvial soils and black earths.


The article discusses organic and organic-mineral soil transformations induced by fire. The research covered 24 soil profiles. It was primarily focused on water properties of post-fire soils, such as the hydrophobic degree, analysed by means of percent alcohol (MED) and WDPT test, and soil water capacity indicator (W1). The above indicators determine the degree of intensification of the moorsh process in post-fire organic soil horizons. Total carbon content was also determined by means of a gas method analyzer by CS . MAT 5500, as well as the level of organic material decomposition by means of the half syringe method. The achieved result suggests that the moorsh process and low temperature fires led to an increase in the hydrophobic property of soil organic matter, whereas in high fire temperature, the soil included more ash, and the hydrophilic properties were higher. The significant degree of transformation was also confirmed by the water capacity indicator (W1). It primarily concerned the upper horizons of the investigated soil profiles. The majority of the 76 analysed soil samples showed signs of secondary transformation.

Związki Próchniczne Czarnych Ziem Leśnych w Parku Krajobrazowym "Dolina Baryczy"


The aim of the study was to show the impact of the peat extraction on the development and properties of organic soils and plant habitat in post-extraction sites. The study was conducted in the complex of the Trzcińskie Mokradła Peatlands (Sudetes Mts., SW Poland). The Trzcińskie Mokradła Peatlands began to form in Preboreal (10960–9330 ±50BP) so that they are one of the oldest peatlands in the Sudetes. We analyzed 8 soil profiles (42 samples). Peat forming process there is still active in the moderate or strong degree (PtII-PtIII). The floristic composition of the studied areas was typical of transition peatlands. Successive dry and moist periods were observed in the developed of organic soils. The time gaps in peat profiles covering hundreds of years prove their extraction in the past.


Drainage and peat extraction may have a negative impact on existing hydrological conditions and, consequently, on the conditions of wetland ecosystems. The aim of this study was to assess human impact on the studied Trzcińskie Mokradła Peatland by comparing the concentrations and trace element (Pb, Zn, Cu, Cr and Ni) pools in the study area (extracted vs. non-extracted areas of peatland). The concentration of trace elements in organic soils and their pools were analysed in relation to their depth in the soil profiles, content of organic matter, soil pH values and the degree of decomposition of organic materials (peat, mursh). Fifteen soil profiles (90 samples) were examined. The total soil elements content was determined after digestion in a mixture of HCl+HNO3. The element pools were calculated and expressed in g m−2 of soil in 0–30 cm and 30–50 cm layers. Soils showed acidic or slightly acidic reactions. The high concentrations of Pb and Zn were mainly observed in the upper horizons. The deeper layers enriched with mineral fractions were also enriched in metals like Cr and Ni.


The aim of this work was to determine the intensity of nitrogen mineralization in forestry drained ombrotrophic peatland soils in the Stołowe Mountains National Park, SW Poland. Additionally discussion about the shallow organic soils classification according to is presented. For the study three research transects were established on forestry drained ombrotrophic peatlands in the Stołowe Mountains. Each of the transect consisted of four (site A and B) or five (site C) sampling plots. Sampling was conducted in the year 2012. The soil samples for the basic soil properties analysis were sampled in April, whereas undisturbed soil samples were collected in stainless steel rings (100 cm3) every 10 cm in April (spring), July (summer) and October (autumn) to show the seasonal dynamics of nitrogen mineralization. Statistical analysis showed that the content of N-NH4 was mainly determined by actual soil moisture and precipitation rate, whereas the content of N-NO3 was positively correlated with air temperature. Among investigated peatlands the highest concentrations of mineral nitrogen forms was observed in the Długie Mokradło bog, situated on the Skalniak Plateau-summit. Additionally, the results obtained showed that implementation of new subtype: shallow fibric peat soils (in Polish: gleby torfowe fibrowe płytkie) within the type of peat soils (in polish: gleby torfowe) should be considered during developing of the next update of Polish Soil Classification.


Despite a large number of organic soil types and subtypes in the Polish Soil Classification the problems of organic soils classification are still very common. In relation to mountain organic soils, in particular. The aim of this paper is to discuss the most common problems related to mountain organic soils classification according to the Polish Soil Classification. Based on authors’ own research and literature studies mentioned problem was described. This work allows to define some new proposals, which should be considered during developing of the next update of the Polish Soil Classification (PSC). The most important proposals related to: criteria for organic materials and organic soils, taxonomy position and criteria for shallow organic soils and new definition of mineral material admixture in organic soils.

O Specyfice Bielic Górskich

Gleby Organiczne na Renaturyzowanym Torfowisku "Niknąca Łąka" w Parku Narodowym Gór Stołowych


Introduction: Blood brain barrier and multidrug resistance phenomenon are subjects of many investigations. Mainly, because of their functions in protecting the central nervous system (CNS) by blocking the delivery of toxic substances to the brain. This special function has some disadvantages, like drug delivery to the brain in neurodegenerative diseases

Objective: The aim of this study was to examine how natural and synthetic substances affect the expression levels of genes (Mdr1a, Mdr1b, Mrp1, Mrp2, Oatp1a4, Oatp1a5 and Oatp1c1) that encode transporters in the blood-brain barrier.

Methods: cDNA was synthesized from total RNA isolated from rat hippocampus. The expression level of genes was determined using real-time PCR (RT-PCR) method.

Results: Our findings showed that verapamil, as a synthetic substance, caused the greatest reduction of mRNA level of genes studied. The standardized extract of Curcuma longa reduced the expression level for Mrp1 and Mrp2, whereas the increase of mRNA level was observed for Mdr1b, Oatp1a5 and Oatp1c1.

Conclusions: These results suggests that herbal extracts may play an important role in overcoming the blood brain barrier during pharmacotherapy.