Search Results

1 - 2 of 2 items

  • Author: Abdul Jabbar x
Clear All Modify Search


The quest for sound-absorbing materials that are not only environmentally friendly, but also sustainable is the foremost reason for natural fibre-acoustic materials. Bark cloth is a natural non-woven fabric that is largely produced from Ficus trees. An exploratory investigation of bark cloth a non-woven material and its reinforcement in epoxy polymer composites has been fabricated and investigated for the sound absorption properties so as to find the most suitable applications and also to see whether bark cloth can be used in some applications in place of man-made fibres. Three types of material species were investigated with their respective composites. The fibre morphology showed bark cloth to be a porous fabric that showed promising sound absorption properties at higher frequencies. The sound absorption results of four-layer material selections of Ficus natalensis, Ficus brachypoda and Antiaris toxicaria bark cloth showed sound absorption coefficient of 0.7; 0.71 and 0.91 at f > 6400 Hz, respectively. The bark cloth reinforced laminar epoxy composites had reduced sound absorption coefficients, which ranged from 0.1 to 0.35, which was attributed to decreased porosity and vibration in the bark cloth fibre network.


The demand of cotton is increasing but its low production rate cannot fulfill the world requirements. The increase in cotton demand has augmented the production of regenerated cellulosic fibers. Furthermore, cotton has proved to be unsustainable because of the use of huge amount of fresh water, pesticides and insecticides. The purpose of this work is to find out the suitable blend/blends of regenerated fibers so as to replace 100% cotton fabrics. Therefore, mechanical and comfort properties of Tencel fabrics blended with other regenerated cellulose fibers have been compared with 100% cotton to achieve the equivalent or even better end properties. Hence, cotton, viscose, Tencel, modal, and bamboo fibers were taken. Plain woven blended fabrics of 100% cotton and 50:50 blends of Tencel with other regenerated fibers were prepared from normal yarn count of 20 tex. The mechanical properties (warp-wise and weft-wise tensile and tear strengths, pilling, and abrasion resistance) and the comfort properties including air permeability, moisture management properties, and thermal resistance were evaluated. It is found that Tencel blended fabrics show better results than 100% cotton fabrics. Therefore, it is concluded that Tencel blended with these regenerated fabrics can be used to replace 100% cotton fabrics.