Search Results

1 - 2 of 2 items

  • Author: Abdul Hamid Ismail x
Clear All Modify Search
Knee-to-knee bioimpedance measurements to monitor changes in extracellular fluid in haemodynamic-unstable patients during dialysis

Abstract

The feasibility of bioimpedance spectroscopy (BIS) techniques for monitoring intradialytic changes in body fluids is advancing. The aim of this study was to compare the knee-to-knee (kkBIS) with the traditional whole-body (whBIS) with respect to continuous assessment of fluid volume status in hemodialysis patients. Twenty patients divided into two groups, hemodynamically stable and unstable, were recruited. Bioimpedance data from two different electrodes configurations (hand-to-foot and knee-to-knee) were collected and retrospectively analysed. A good correlation between the two methods with respect to changes in extracellular resistance (Re) and Re normalized for ultrafiltration volume (ΔRe/UFV) with p < 0.001 was observed. The relationship between relative change (%) in ΔRe and that in patient weight was most notable with kkBIS (4.82 ± 3.31 %/kg) in comparison to whBIS (3.69 ± 2.90 %/kg) in unstable patients. Furthermore, results based on kkBIS showed a reduced ability of the thigh compartments to keep up with the volume changes in the trunk for unstable patients. kkBIS provided a comparable sensitivity to whBIS even in patients at risk of intradialytic hypotension while avoiding the need for the complex implementation imposed by whBIS or other configurations.

Open access
Airflow inside the nasal cavity: visualization using computational fluid dynamics

Abstract

Background: It is of clinical importance to examine the nasal cavity pre-operatively on surgical treatments. However, there is no simple and easy way to measure airflow in the nasal cavity. Objectives: Visualize the flow features inside the nasal cavity using computational fluid dynamics (CFD) method, and study the effect of different breathing rates on nasal function. Method: A three-dimensional nasal cavity model was reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes and continuity equations for steady airflow were solved numerically to examine the inspiratory nasal flow. Results: The flow resistance obtained varied from 0.026 to 0.124 Pa.s/mL at flow-rate from 7.5 L/min to 40 L/min. Flow rates by breathing had significant influence on airflow velocity and wall shear-stress in the vestibule and nasal valve region. Conclusion: Airflow simulations based on CFD is most useful for better understanding of flow phenomenon inside the nasal cavity.

Open access