Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Abdel-Rhman B. A. El-Gazzar x
Clear All Modify Search
Open access

Hend N. Hafez and Abdel-Rhman B. A. El-Gazzar

Abstract

3-Methyl-6-phenyl-2-thioxo-2,3-dihydrothieno[3,2-d]pyrimidin- 4(1H)-one (2), on treatment with phosphorous oxychoride, affored 4-chloro-3-methyl-6-phenyl -thieno[3,2-d]pyrimidine- 2(3H)-thione (3). A series of novel 6-phenyl-thieno[3,2-d]pyrimidine derivatives 4-9 bearing different functional groups were synthesized via treatment of compound 3 with different reagents. On the other hand, compound 2 was used to synthesize ethyl-[(3-methyl-6-phenyl-2-thioxo-2,3-dihydrothieno[ 3,2-d]pyrimidin-4-yl)-oxy]acetate (10), 2-hydrazinyl- -3-methyl-6-phenyl-thieno[3,2-d]pyrimidin-4(3H)-one (11), 3-methyl-2-(methyl-sulfanyl)-6-phenyl-thieno[3,2-d]pyrimidin- 4(3H)-one (12) and N-(phenyl)/4-chlorophenyl or methoxy- phenyl)-2-[(3-methyl-4-oxo-6-phenyl-3,4-dihydrothieno[ 3,2-d]pyrimidin-2-yl)-sulfanyl]-acetamide (13a-c). In addition, compound 12 was used to synthesize thieno[1,2,4] triazolopyrimidine derivatives 14 and 15 and 3-methyl-2-(methyl-sulfonyl)-6-phenyl-thieno[3,2-d]pyrimidin-4(3H)-one (16) through the reaction with the respective reagents. Moreover, the reaction of 16 with 4-phenylenediamine gave 2-[(4-aminophenyl)-amino]-3-methyl-6-phenyl-thieno[3,2-d] pyrimidin-4(3H)-one (17), which reacted with methanesulfonyl chloride to afford N-{4-[(3-methyl-4-oxo-6-phenyl-3H,4H- -thieno[3,2-d]pyrimidin-2-yl)-amino]phenyl}-methanesulfonamide (18). The majority of the newly synthesized compounds displayed potent anticancer activity, comparable to that of doxorubicin, on three human cancer cell lines, including the human breast adenocarcinoma cell line (MCF-7), cervical carcinoma cell line (HeLa) and colonic carcinoma cell line (HCT- 116). Compounds 18, 13b and 10 were nearly as active as doxorubicin whereas compounds 6, 7b and 15 exhibited marked growth inhibition, but still lower than doxorubicin.

Open access

Hend N. Hafez, Sulaiman A. Alsalamah and Abdel-Rhman B. A. El-Gazzar

Abstract

A novel series of carbamothioylamino-benzene-sulfonamide-thiophene-carboxylates 4a-c and thieno[3,2-d]pyrimidin-2-yl-amino-benzene-sulfonamides 5a-c were synthesized in a series of synthetic steps and were used as key intermediates for the synthesis of thienotriazolopyrimidine-benzene-sulfonamide derivatives 6a-c and 7a-c. Thieno[3,2-d]pyrimidinones (8 and 9) were also prepared. Compound 9 was used as an intermediate for the synthesis of imidazole/1,2,4-triazole and tetrazine functionalized thieno[3,2-d]pyrimidine derivatives (1012). Pyrrole derivatives/pyrrolopyrimidine/pyrrolotriazolopyrimidine functionalized thiophenes (1519) were also synthesized. Structures of the newly synthesized compounds were established by elemental analysis and spectral data. Most of the newly synthesized compounds were evaluated for their in vitro activity against three human tumor cell lines, namely, liver cancer (HepG-2), colon cancer (HT-29) and lung cancer (NCI-H460), using doxorubicin as standard. Compounds 16 (GI 50 = 0.02, 0.04 and 0.06 μmol L−1, resp.) and 19b (GI 50 = 0.02, 0.03 and 0.05 μmol L−1, resp.) showed higher activity against all cell lines than doxorubicin. Most of the compounds were also screened for antibacterial activity using ciprofloxacin as standard drug. Compounds 4b and 6b, both containing benzenesulfonamide linked to N-, 10 bearing imidazole moiety, and 15 and 19b,c with a thiophene-2-carboxylic acid chain, exhibited high activity against Gram-positive and Gram-negative bacteria.

Open access

Hend N. Hafez, Abdulrahman G. Alshammari and Abdel-Rhman B. A. El-Gazzar

Abstract

Reaction of 6-amino-3-methyl-4-(substituted phenyl)-1,4- dihydropyrano[2,3-c]pyrazole-5-carbonitrile (1) with triethylorthoformate followed by treatment with hydrazine hydrate, formic acid, acetic acid, phenylisocyanate, ammonium thiocyanate and formamide afforded the corresponding pyranopyrimidine derivatives 2-6. Cyclocondensation of 1 with cyclohexanone afforded pyrazolopyranoquinoline 7. One-pot process of diazotation and de-diazochlorination of 1 afforded pyrazolopyranotriazine derivative 8, which upon treatment with secondary amines afforded 9 and 10a- c. Condensation of 2 with aromatic aldehyde gave the corresponding Schiff bases 11a,b, the oxidative cyclization of the hydrazone with appropriate oxidant afforded 11-(4- fluorophenyl))- 2-(4-substituted phenyl)-10-methyl-8,11-dihydropyrazolo-[ 4’,3’:5,6]pyrano[3,2-e][1,2,4]triazolo[1,5-c]pyrimidines (12a,b). Structures of the synthesized compounds were confirmed by spectral data and elemental analysis. All synthesized compounds were evaluated for antibacterial and antifungal activities compared to norfloxacin and fluconazole as standard drugs. Compounds 9, 10c, 12a and 15 were found to be the most potent antibacterial agents, with activity equal to that of norfloxacin. On the other hand, compound 5 exhibited higher antifungal activity compared to fluconazole.

Open access

Hend N. Hafez and Abdel-Rhman B. A. El-Gazzar

Abstract

As a part of systematic investigation of the synthesis and biological activities of pyrazole analogues linked to various heterocyclic systems, a new series of pyrazolo-N-glycoside derivatives, pyrazolopyranopyrimidine and C-glycoside of pyrazolopyranotriazolo-pyrimidine derivatives was synthesized through the reaction of the key intermediate 6-amino-3-methyl-4-(substituted-phenyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (3a,b) with different reagents. Structures of the newly synthesized compounds were elucidated by elemental microanalysis and spectroscopic methods. The compounds were subjected to in vitro antitumor evaluation using the MTT assay. N-(β-D-ribofuranosyl)- and N-(β-D-xylofuranosyl)-6{[(1E)-4-chlorophenyl)-methylene] amino}4-(4-florophenyl)-3-methyl-1,4-dihydropyrano[2,3-c]-pyrazole-5-carbonitrile (6a,b) were the most active compounds against three human cancer cell lines. Also, most of the newly synthesized compounds exhibited high activity towards Gram-negative and Gram-positive bacteria. Compound 6a exhibited excellent activity towards bacteria compared to ofloxacine as the reference drug.

Open access

Hend N. Hafez, Abdel-Rhman B. A. El-Gazzar and Magdi E. A. Zaki

Abstract

6ʹ-(4-Chlorophenyl)-spiro[cyclohexane-1,2ʹ-thieno[3,2-d][1,3] oxazin]-4ʹ(1ʹH)-one (1) was synthesized and used as a starting material for the synthesis of a novel series of spiro compounds having biologically active sulfonamide 2a-e and 3ʹ-(4-acetylphenyl)-6ʹ- (4-chlorophenyl)-1ʹH-spiro[cyclohexane-1,2ʹ-thieno[3,2-d] pyrimidine-4ʹ(3ʹH)-one (3). Compound 2a was used as a key intermediate for the synthesis of sulfonyl carbothioamide derivatives 4a-c. Also, compound 3 was used as an intermediate for the synthesis of 3ʹH-spiro[cyclohexane-1,2ʹ-thieno[3,2-d]pyrimidin]-3ʹ-yl] phenyl}-2-imino-4-(substituted phenyl and/or thienyl)-1,2-dihydropyridine- 3-carbonitrile derivatives 5a-e, 3ʹH-spiro[cyclohexane- 1,2ʹ- thieno[3,2-d]pyrimidin]-3ʹ-yl]phenyl}-2-oxo-4-(substituted phenyl and/or thienyl)-1,2-dihydropyridine-3-carbonitrile derivatives 6a-e, and 4-[(2Z)-3-substituted-arylprop-2-enoyl] phenyl-1ʹH-spiro[cyclohexane-1,2ʹ-thieno[3,2-d]pyrimidine derivatives 7a-e. Cyclocondensation of 7a-e with hydrazine hydrate produced 6ʹ-(4-chlorophenyl)-3ʹ-[4-(5-substituted aryl-4,5-dihydro- 1H-pyrazol-3-yl)phenyl]-1ʹH-spiro[cyclohexane-1,2ʹ-thieno- [3,2-d]pyrimidin]-4ʹ(3ʹH)-ones 8a-e but with hydroxylamine hydrochloride afforded the corresponding isoxazoline derivatives 9a-e. Also, cyclocondensation by thiourea afforded 2-thioxo-1,2- dihydropyrimidin-4-yl)-phenyl-spiro-{cyclohexanethieno[3,2-d] pyrimidin}-4-one derivatives 10a-e. The new compounds were investigated for antimicrobial activity. Compounds 2c, 8b,c, 9b and 10b were the most potent ones against both Gram-negative and Gram-positive bacteria. Compound 8c exhibited higher antifungal activity towards the examined fungi with MIC of 1-2 μmol mL-1 compared to ketoconazole (MIC 2-3 μmol mL-1 ).