Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Aaron Johnson x
Clear All Modify Search
Open access

Aaron D. Jaggard, Aaron Johnson, Sarah Cortes, Paul Syverson and Joan Feigenbaum

Abstract

Motivated by the effectiveness of correlation attacks against Tor, the censorship arms race, and observations of malicious relays in Tor, we propose that Tor users capture their trust in network elements using probability distributions over the sets of elements observed by network adversaries. We present a modular system that allows users to efficiently and conveniently create such distributions and use them to improve their security. To illustrate this system, we present two novel types of adversaries. First, we study a powerful, pervasive adversary that can compromise an unknown number of Autonomous System organizations, Internet Exchange Point organizations, and Tor relay families. Second, we initiate the study of how an adversary might use Mutual Legal Assistance Treaties (MLATs) to enact surveillance. As part of this, we identify submarine cables as a potential subject of trust and incorporate data about these into our MLAT analysis by using them as a proxy for adversary power. Finally, we present preliminary experimental results that show the potential for our trust framework to be used by Tor clients and services to improve security.

Open access

Aaron Johnson, Rob Jansen, Nicholas Hopper, Aaron Segal and Paul Syverson

Abstract

We present PeerFlow, a system to securely load balance client traffic in Tor. Security in Tor requires that no adversary handle too much traffic. However, Tor relays are run by volunteers who cannot be trusted to report the relay bandwidths, which Tor clients use for load balancing. We show that existing methods to determine the bandwidths of Tor relays allow an adversary with little bandwidth to attack large amounts of client traffic. These methods include Tor’s current bandwidth-scanning system, TorFlow, and the peer-measurement system EigenSpeed. We present an improved design called PeerFlow that uses a peer-measurement process both to limit an adversary’s ability to increase his measured bandwidth and to improve accuracy. We show our system to be secure, fast, and efficient. We implement PeerFlow in Tor and demonstrate its speed and accuracy in large-scale network simulations.

Open access

Joshua Juen, Aaron Johnson, Anupam Das, Nikita Borisov and Matthew Caesar

Abstract

The Tor anonymity network has been shown vulnerable to traffic analysis attacks by autonomous systems (ASes) and Internet exchanges (IXes), which can observe different overlay hops belonging to the same circuit. We evaluate whether network path prediction techniques provide an accurate picture of the threat from such adversaries, and whether they can be used to avoid this threat. We perform a measurement study by collecting 17.2 million traceroutes from Tor relays to destinations around the Internet. We compare the collected traceroute paths to predicted paths using state-of-the-art path inference techniques. We find that traceroutes present a very different picture, with the set of ASes seen in the traceroute path differing from the predicted path 80% of the time. We also consider the impact that prediction errors have on Tor security. Using a simulator to choose paths over a week, our traceroutes indicate a user has nearly a 100% chance of at least one compromise in a week with 11% of total paths containing an AS compromise and less than 1% containing an IX compromise when using default Tor selection. We find modifying the path selection to choose paths predicted to be safe lowers total paths with an AS compromise to 0.14% but still presents a 5–11% chance of at least one compromise in a week while making 5% of paths fail, with 96% of failures due to false positives in path inferences. Our results demonstrate more measurement and better path prediction is necessary to mitigate the risk of AS and IX adversaries to Tor.

Open access

Ryan Wails, Yixin Sun, Aaron Johnson, Mung Chiang and Prateek Mittal

Abstract

Many recent proposals for anonymous communication omit from their security analyses a consideration of the effects of time on important system components. In practice, many components of anonymity systems, such as the client location and network structure, exhibit changes and patterns over time. In this paper, we focus on the effect of such temporal dynamics on the security of anonymity networks. We present Tempest, a suite of novel attacks based on (1) client mobility, (2) usage patterns, and (3) changes in the underlying network routing. Using experimental analysis on real-world datasets, we demonstrate that these temporal attacks degrade user privacy across a wide range of anonymity networks, including deployed systems such as Tor; pathselection protocols for Tor such as DeNASA, TAPS, and Counter-RAPTOR; and network-layer anonymity protocols for Internet routing such as Dovetail and HORNET. The degradation is in some cases surprisingly severe. For example, a single host failure or network route change could quickly and with high certainty identify the client’s ISP to a malicious host or ISP. The adversary behind each attack is relatively weak – generally passive and in control of one network location or a small number of hosts. Our findings suggest that designers of anonymity systems should rigorously consider the impact of temporal dynamics when analyzing anonymity.

Open access

Gerry Wan, Aaron Johnson, Ryan Wails, Sameer Wagh and Prateek Mittal

Abstract

The popularity of Tor has made it an attractive target for a variety of deanonymization and fingerprinting attacks. Location-based path selection algorithms have been proposed as a countermeasure to defend against such attacks. However, adversaries can exploit the location-awareness of these algorithms by strategically placing relays in locations that increase their chances of being selected as a client’s guard. Being chosen as a guard facilitates website fingerprinting and traffic correlation attacks over extended time periods. In this work, we rigorously define and analyze the guard placement attack. We present novel guard placement attacks and show that three state-of-the-art path selection algorithms—Counter-RAPTOR, DeNASA, and LASTor—are vulnerable to these attacks, overcoming defenses considered by all three systems. For instance, in one attack, we show that an adversary contributing only 0.216% of Tor’s total bandwidth can attain an average selection probability of 18.22%, 84× higher than what it would be under Tor currently. Our findings indicate that existing location-based path selection algorithms allow guards to achieve disproportionately high selection probabilities relative to the cost required to run the guard. Finally, we propose and evaluate a generic defense mechanism that provably defends any path selection algorithm against guard placement attacks. We run our defense mechanism on each of the three path selection algorithms, and find that our mechanism significantly enhances the security of these algorithms against guard placement attacks with only minimal impact to the goals or performance of the original algorithms.