Search Results

You are looking at 1 - 2 of 2 items for

  • Author: A. Szymkiewicz x
Clear All Modify Search
Open access

Agata Szymkiewicz and Justyna Chudzik-Kozłowska

The aim of the study was to analyse the potential pea-peanut cross-reactivity using the mice BALB/c as a biological in vivo model in the research on immune response to peanut proteins (PnE). BALB/c mice were three-fold sensitised (on days 1, 7, and 21) by oral or intraperitoneal (IP) administration of PnE in 0.5 mg or 1 mg dose, with or without adjuvant - aluminum hydroxide gel (Alum). Serum immunoglobulins (IgE, IgG, IgG1 and IgG2a) and level of cytokines (IL-4, IL-10, IFN- γ), secreted by the isolated lymphocytes were examined. The highest increase in total IgE and peanut-specific IgG1 was noted in the group sensitised by IP administration of PnE in the presence of Alum. Lymphocytes from peanut-sensitised (with and without Alum) mice showed a significantly high level of IL-4 and this cytokine was secreted to a much higher extent as compared to IFN-γ. Stimulation of a culture of lymphocytes with pea proteins resulted in high IFN-γ secretion. A weak reaction of peanut-specific IgG1 present in mice serum with pea globulins (vicilin - PV and legumin - PL) can suggest that the cross-reactivity between peanut and pea proteins results from the presence of proteins other than 7S and 11S globulins. Due to the demonstrated low cross-reactivity between peanut proteins and pea globulins, the possibility of applying pea proteins in peanut-allergy immunotherapy may be suggested.

Open access

A. Szymkiewicz and K. Burzynski

Abstract

This paper compares numerical solutions of transient two-dimensional unsaturated flow equation by using different averaging schemes for internodal conductivities. Averaging methods such as arithmetic mean, geometric mean, upstream weighting, and integrated mean are taken into account, as well as a recent approach based on steady-state approximation. The latter method proved the most flexible, producing relatively accurate solutions for both downward and upward flow cases.