Search Results

1 - 6 of 6 items

  • Author: A. Szychowski x
Clear All Modify Search
Buckling Of The Stiffened Flange Of The Thin-Walled Member At Longitudinal Stress Variation

Abstract

Buckling of the stiffened flange of a thin-walled member is reduced to the buckling analysis of the cantilever plate, elastically restrained against rotation, with the free edge stiffener, which is susceptible to deflection. Longitudinal stress variation is taken into account using a linear function and a 2nd degree parabola. Deflection functions for the plate and the stiffener, adopted in the study, made it possible to model boundary conditions and different buckling modes at the occurrence of longitudinal stress variation. Graphs of buckling coefficients are determined for different load distributions as a function of the elastic restraint coefficient and geometric details of the stiffener. Exemplary buckling modes are presented.

Open access
Computation of Thin-Walled Cross-Section Resistance to Local Buckling with the Use of the Critical Plate Method

Abstract

Thin-walled bars currently applied in metal construction engineering belong to a group of members, the cross-section res i stance of which is affected by the phenomena of local or distortional stability loss. This results from the fact that the cross-section of such a bar consists of slender-plate elements. The study presents the method of calculating the resistance of the cross-section susceptible to local buckling which is based on the loss of stability of the weakest plate (wall). The “Critical Plate” (CP) was identified by comparing critical stress in cross-section component plates under a given stress condition. Then, the CP showing the lowest critical stress was modelled, depending on boundary conditions, as an internal or cantilever element elastically restrained in the restraining plate (RP). Longitudinal stress distribution was accounted for by means of a constant, linear or non-linear (acc. the second degree parabola) function. For the critical buckling stress, as calculated above, the local critical resistance of the cross-section was determined, which sets a limit on the validity of the Vlasov theory. In order to determine the design ultimate resistance of the cross-section, the effective width theory was applied, while taking into consideration the assumptions specified in the study. The application of the Critical Plate Method (CPM) was presented in the examples. Analytical calculation results were compared with selected experimental findings. It was demonstrated that taking into consideration the CP elastic restraint and longitudinal stress variation results in a more accurate representation of thin-walled element behaviour in the engineering computational model.

Open access
Characterization of Active Compounds of Different Garlic (Allium sativum L.) Cultivars

Abstract

Garlic (Allium sativum L.) has a reputation as a therapeutic agent for many different diseases such as microbial infections, hypertension, hypercholesterolaemia, diabetes, atherosclerosis and cancer. Health benefits of garlic depend on its content of biologically-active compounds, which differs between cultivars and geographical regions. The aim of this study was to evaluate and compare the biological activity of aqueous extracts from nine garlic varieties from different countries (Poland, Spain, China, Portugal, Burma, Thailand and Uzbekistan). Antioxidant properties were evaluated through free radical scavenging (DPPH, ABTS•+) and ion chelation (Fe2+, Cu2+) activities. The cytotoxicity of garlic extracts was evaluated in vitro using Neutral Red Uptake assay in normal human skin fibroblasts. The obtained results revealed that garlic extracts contained the highest amount of syringic and p-hydroxybenzoic acids derivatives. The lowest IC50 values for DPPH, ABTS•+ scavenging and Cu2+ chelating ability were determined in Chinese garlic extracts (4.63, 0.43 and 14.90 μg/mL, respectively). Extracts from Spanish cultivar Morado and Chinese garlic were highly cytotoxic to human skin fibroblasts as they reduced cellular proliferation by 70–90%. We showed diverse contents of proteins and phenolic components in garlic bulbs from different varieties. The obtained results could help to choose the cultivars of garlic which contain significant amounts of active compounds, have important antioxidant properties and display low antiproliferative effect and/or low cytotoxicity against normal human skin fibroblast BJ.

Open access
Stability and Resistance of Steel Continuous Beams with Thin-Walled Box Sections

Abstract

The issues of local stability and ultimate resistance of a continuous beam with thin-walled box section (Class 4) were reduced to the analysis of the local buckling of bilaterally elastically restrained internal plate of the compression flange at longitudinal stress variation. Critical stress of the local buckling was determined using the so-called Critical Plate Method (CPM). In the method, the effect of the elastic restraint of the component walls of the bar section and the effect of longitudinal stress variation that results from varying distribution of bending moments were taken into account. On that basis, appropriate effective characteristics of reliable sections were determined. Additionally, ultimate resistances of those sections were estimated. The impact of longitudinal stress variation and of the degree of elastic restraint of longitudinal edges on, respectively, the local buckling of compression flanges in the span section (p) and support section (s) was analysed. The influence of the span length of the continuous beam and of the relative plate slenderness of the compression flange on the critical ultimate resistance of box sections was examined.

Open access
Lateral-Torsional Buckling of Beams Elastically Restrained Against Warping at Supports

Abstract

The study presents the results of theoretical investigations into lateral torsional buckling (LTB) of bi-symmetric I-beams, elastically restrained against warping at supports. Beam loading schemes commonly used in practice are taken into account. The whole range of stiffness of the support joints, from free warping to warping fully restrained, is considered. To determine the critical moment, the energy method is used. The function of the beam twist angle is described with power polynomials that have simple physical interpretation. Computer programs written in symbolic language for numerical analysis are developed. General approximation formulas are devised. Detailed calculations are performed for beams with end-plate joints. Critical moments determined with programs and approximation formulas are compared with the results obtained by other researchers and with those produced by FEM. Very good accuracy of results is obtained.

Open access
Shapes Of Energy-Active Segments Of Steel Buildings

Abstract

The study presents the summary of the knowledge of energy-active segments of steel buildings adapted to obtain electrical energy (EE) and thermal energy (TE) from solar radiation, and to transport and store TE. The study shows a general concept of the design of energy-active segments, which are separated from conventional segments in the way that allows the equipment installation and replacement. Exemplary solutions for the design of energy-active segments, optimised with respect to the principle of minimum thermal strain and maximum structural capacity and reliability were given [34]. The following options of the building covers were considered: 1) regular structure, 2) reduced structure, 3) basket structure, 4) structure with a tie, high-pitched to allow snow sliding down the roof to enhance TE and EE obtainment. The essential task described in the study is the optimal adaptation of energy-active segments in large-volume buildings for extraction, transportation and storage of energy from solar radiation.

Open access