Search Results

You are looking at 1 - 3 of 3 items for

  • Author: A. Nosalewicz x
Clear All Modify Search
Open access

M. Nosalewicz, Z. Stępniewska and A. Nosalewicz

Abstract

Flooded organic soils are potentially important sources of greenhouse gases. The effect of soil temperature and moisture on the concentration of N2O and CO2 at two depths of organic soil flooded with two doses of purified wastewater was studied. Nitrous oxide concentrations at the 10-30 cm depth range were generally increased with an increase in soil moisture, showing dependence on the aeration status of soil. The maximum values of N2O concentrations were higher at the 50-100 than 10-30 cm depth range, but a similar pattern of increasing maximum values of N2O concentration with an increasing input of nitrogen in treatments at both depth ranges was observed. The maximum concentrations of carbon dioxide within the 50-100 cm depth range remained at a similar level in all treatments reaching 7.1-7.7%, which indicated weak relations with the input of water and nitrogen at this depth range. We conclude that the N2O and CO2 concentrations at 10-30 cm depths in the examined organic soil flooded with 600mm year-1 of purified wastewater exhibited a similar level as the concentrations in soil watered only by precipitation.

Open access

Tamara I. Balakhnina, Aneta Borkowska, Magdalena Nosalewicz, Artur Nosalewicz, Teresa M. Włodarczyk, Anatoly A. Kosobryukhov and Irina R. Fomina

Abstract

Fluctuation of the summer day-time temperatures in the mid-latitudes in a range from 16 to 30°C should not have irreversible negative effects on plants, but may influence metabolic processes including the oxidative stress. To test the effect of moderately high temperature on oxidative stress induced by lead in the leaves of Plantago major L.; the plants were incubated in a water solution of 0, 150, 450, and 900 μM Pb (NO3)2 at 20 and 28°C. Plant reactions were evaluated by the content of thiobarbituric acid reactive substances and ascorbate peroxidase and glutathione reductase activities in leaves after 2, 24, 48, and 72 h. The Pb concentration in the leaves rose with the increase in the Pb content and was higher at 20°C. The increase in stomatal resistance caused by Pb was higher at 28°C. The contents of TBARS increased after 2 h of plant exposure to Pb and the increase was the highest at 900 μM Pb, 28°C. The AsP activity increased up to 50% after 24 h of Pb-treatment at 28°C; the highest increase in glutathione reductase activity was observed after 72 h at 20°C. Thus, the moderately high temperature 28°C compared with optimal 20°C caused a decrease in Pb accumulation in Plantago leaves but amplified the negative effects of lead, especially in the beginning of stress development.

Open access

J. Lipiec, C. Doussan, A. Nosalewicz and K. Kondracka

Abstract

Drought and heat stresses are important threat limitations to plant growth and sustainable agriculture worldwide. Our objective is to provide a review of plant responses and adaptations to drought and elevated temperature including roots, shoots, and final yield and management approaches for alleviating adverse effects of the stresses based mostly on recent literature. The sections of the paper deal with plant responses including root growth, transpiration, photosynthesis, water use efficiency, phenotypic flexibility, accumulation of compounds of low molecular mass (eg proline and gibberellins), and expression of some genes and proteins for increasing the tolerance to the abiotic stresses. Soil and crop management practices to alleviate negative effects of drought and heat stresses are also discussed. Investigations involving determination of plant assimilate partitioning, phenotypic plasticity, and identification of most stress-tolerant plant genotypes are essential for understanding the complexity of the responses and for future plant breeding. The adverse effects of drought and heat stress can be mitigated by soil management practices, crop establishment, and foliar application of growth regulators by maintaining an appropriate level of water in the leaves due to osmotic adjustment and stomatal performance.