Search Results

You are looking at 1 - 2 of 2 items for

  • Author: A. Maleki x
Clear All Modify Search
Open access

A. Najafi-Jilani and D. Rahimi-Maleki

Abstract

Field investigations have been carried out in two 60-day stages on the surf beat low frequency waves in Anzali port, one of the main commercial ports in Iran, located in southwest coast of the Caspian Sea. The characteristics of significant water waves were measured at three metering stations in the sea, one at the entrance of the port and three in the basin. The measured data were inspected to investigate the surf beat negative effects on the tranquility of the port. Using field measurements and complementary numerical modeling, the response of the basin to the infragravity long waves was inspected for a range of wave frequencies. It was concluded that the water surface fluctuations in the port is strongly related to the incident wave period. The long waves with periods of about 45s were recognized as the worst cases for water surface perturbation in the port. For wave periods higher than the mentioned range, the order of fluctuation was generally low.

Open access

A. Maleki and A. Ahmadi

Abstract

This paper presented a three dimensional analysis for the buckling behavior of an imperfect orthotropic thick cylindrical shells under pure axial or external pressure loading. Critical loads are computed for different imperfection parameter. Both ends of the shell have simply supported conditions. Governing differential equations are driven based on the second Piola–Kirchhoff stress tensor and are reduced to a homogenous linear system of equations using differential quadrature method. Buckling loads reduction factor is computed for different imperfection parameters and geometrical properties of orthotropic shells. The sensitivity is established through tables of buckling load reduction factors versus imperfection amplitude. It is shown that imperfections have higher effects on the buckling load of thin shells than thick ones. Results show that the presented method is very accurate and can capture the various geometrical imperfections observed during the manufacturing process or transportation.