Search Results

You are looking at 1 - 10 of 10 items for

  • Author: A. Grajcar x
Clear All Modify Search
Open access

A. Grajcar

Segregation Behaviour of Third Generation Advanced High-Strength Mn-Al Steels

The paper addresses the macro- and microsegregation of alloying elements in the new-developed Mn-Al TRIP steels, which belong to the third generation of advanced high-strength steels (AHSS) used in the automotive industry. The segregation behaviour both in the as-cast state and after hot forging was assessed in the macro scale by OES and by EDS measurements in different structural constituents. The structural investigations were carried out using light and scanning electron microscopy. A special attention was paid to the effect of Nb microaddition on the structure and the segregation of alloying elements. The tendency of Mn and Al to macrosegregation was found. It is difficult to remove in Nb-free steels. Microsegregation of Mn and Al between austenite and ferritic structural constituents can be removed.

Open access

M. Opiela and A. Grajcar

Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo-mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%), phosphorus (from 0.006 to 0.008%) and oxygen (6 ppm). The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17 μm2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of non-metallic inclusions during hot-working.

Open access

A. Grajcar, D. Woźniak and A. Kozłowska

Abstract

The work addresses the production of medium-Mn steels with an increased Al content. The special attention is focused on the identification of non-metallic inclusions and their modification using rare earth elements. The conditions of the thermomechanical treatment using the metallurgical Gleeble simulator and the semi-industrial hot rolling line were designed for steels containing 3 and 5% Mn. Hot-working conditions and controlled cooling strategies with the isothermal holding of steel at 400°C were selected. The effect of Mn content on the hot-working behaviour and microstructure of steel was addressed. The force-energetic parameters of hot rolling were determined. The identification of structural constituents was performed using light microscopy and scanning electron microscopy methods. The addition of rare earth elements led to the total modification of non-metallic inclusions, i.e., they replaced Mn and Al forming complex oxysulphides. The Mn content in a range between 3 and 5% does not affect the inclusion type and the hot-working behaviour. In contrast, it was found that Mn has a significant effect on a microstructure.

Open access

A. Grajcar, P. Skrzypczyk and D. Wozniak

Abstract

Chemical composition of four medium-Mn steels containing a various Mn content (3 and 5%) have been proposed in the present work. The two steels are base steels whereas the other two contain Nb microaddition. Thermomechanical rolling tests of 3.3 mm sheets have been carried out using a semi-industrial hot strip rolling line. Detailed investigations of the identification of structural constituents using light microscopy and scanning electron microscopy techniques have been performed. X-ray method has been applied to determine an amount of retained austenite and its C content. Significant microstructural parameters were revealed using an EBSD technique. It was found that the Mn addition affects strongly a microstructure type, stability of retained austenite and mechanical properties determined with a static tensile test. The steels containing 3% Mn are characterized by a good combination of strength and ductility whereas the tensile strength up to 1300 MPa is possible to obtain for the higher Mn content steels.

Open access

S. Stano, A. Grajcar, Z. Wilk, M. Różański, P. Matter and M. Morawiec

Abstract

The article presents the possibility of using twin-spot laser welding (i.e. laser welding with focusing a laser beam on two spots) for making overlap joints made of 0.8-1 mm thick HSLA and DP type high strength steel sheets. Joints were made using a Yb:YAG disc laser having a maximum power of 12 kW and a welding head by means of which it was possible to focus a laser beam on two spots, 0.6 mm and 1 mm away. The angle between focuses amounted to 0° or 90°, whereas the power distribution was 50%-50%. With settings as presented above it was possible to obtain high-quality overlap joints. The geometrical parameters of the joints were primarily affected by beams positions (in relation to each other) and, to a lesser degree, by the distance between the focuses. It was possible to obtain a 10% hardness reduction in the fusion zone of the DPHSLA steel joints if the angle between the beams amounted to 90°. The tests also involved microstructural examinations of individual zones of the joints

Open access

A. Grajcar, A. Kilarski, K. Radwanski and R. Swadzba

Abstract

The work addresses relationships between the microstructure evolution and mechanical properties of two thermomechanically processed bainitic steels containing 3 and 5% Mn. The steels contain blocky-type and interlath metastable retained austenite embeded between laths of bainitic ferrite. To monitor the transformation behaviour of retained austenite into strain-induced martensite tensile tests were interrupted at 5%, 10%, and rupture strain. The identification of retained austenite and strain-induced martensite was carried out using light microscopy (LM), scanning electron microscopy (SEM) equipped with EBSD (Electron Backscatter Diffraction) and transmission electron microscopy (TEM). The amount of retained austenite was determined by XRD. It was found that the increase of Mn addition from 3 to 5% detrimentally decreases a volume fraction of retained austenite, its carbon content, and ductility.

Open access

A. Grajcar, B. Grzegorczyk and A. Kozłowska

Abstract

Corrosion resistance of the X4MnSiAlNbTi27-4-2 and X6MnSiAlNbTi26-3-3 type austenitic steels, after hot deformation as well as after cold rolling, were evaluated in 3.5% NaCl solution using potentiodynamic polarization tests. A type of nonmetallic inclusions and their pitting corrosion behaviour were investigated. Additionally, the effect of cold deformation on the corrosion resistance of high-Mn steels was studied. The SEM micrographs revealed that corrosion damage formed in both investigated steels is characterized by various shapes and an irregular distribution at the metallic matrix, independently on the steel state (thermomechanically treated or cold worked). Corrosion pits are generated both in grain interiors, grain boundaries and along the deformation bands. Moreover, corrosion damage is stronger in cold deformed steels in comparison to the thermomechanically treated specimens. EDS analysis revealed that corrosion pits preferentially nucleated on MnS and AlN inclusions or complex oxysulphides. The morphology of corrosion damage in 3.5% NaCl supports the data registered in potentiodynamic tests.

Open access

A. Grajcar, M. Różański, M. Kamińska and B. Grzegorczyk

Abstract

The work concerns the studies on non-metallic inclusions occuring in laser-welded Si-Al TRIP steel containing Nb and Ti microadditions. Laser welding tests of 2 mm thick thermomechanically rolled sheets were carried out using keyhole welding and a solid-state laser. The results of laser welding in the air atmosphere for the heat input value of 0.048 kJ/mm are included. The distribution, type and chemical composition of non-metallic inclusions formed in the base metal, heat-affected zone, and fusion zone are analysed in detail. It was found that the base metal contains rare, fine oxysulphides. Their chemical composition was modified by rare earth elements. Numerous oxide inclusions of a various size and a chemical composition occur in the fusion zone. The dependence between a size of particles and their chemical composition was observed. A microstructure of steel was assessed using light microscopy and scanning electron microscopy techniques.

Open access

M. Różański, M. Morawiec, A. Grajcar and S. Stano

Abstract

The work addresses modified methods of twin-spot laser welding of complex phase steel sheets and investigates the effects of laser beam distribution on the macrostructure, microstructure and hardness. The research-related results were obtained for the beam power distributions of 50%-50%, 60%-40% and 70%-30%. Test joints were made using a Yb:YAG disc laser with a maximum power of 12 kW and a welding head by means of which it was possible to focus a laser beam on two spots. It was found that the change in the laser beam distribution affects geometrical features of the joint. The application of the second beam of lower power enables obtaining tempering-like effects, which finally lead to the beneficial hardness reduction both in the fusion zone and in heat-affected zone. The identification of various microstructural constituents in different zones of the joint was performed using light microscopic micrographs and scanning electron images.

Open access

A. Grajcar, B. Grzegorczyk, M. Różański, S. Stano and M. Morawiec

Abstract

This work is concerned with comparative tests involving single-spot and twin-spot laser welding of thermomechanically rolled TRIP steel. The welding tests were carried out using keyhole welding and a solid state laser. In the case of twin-spot laser beam welding, the power distribution of beams was 50%:50%. The changes in macro- and microstructures were investigated using light and scanning electron microscopy. Three main zones subjected to the tests included the fusion zone, the heat affected zone and the intercritical heat affected zone (transition zone between the base material and the HAZ). Special attention was paid to the effect of various thermal cycles on the microstructure of each zone and on martensite morphology. The tests involved hardness measurements carried out in order to investigate the effect of different microstructures on mechanical properties of welds.