Search Results

You are looking at 1 - 10 of 12 items for

  • Author: A. Garbacz-Klempka x
Clear All Modify Search
Open access

S. Rzadkosz, J. Kozana, A. Garbacz-Klempka and M. Piękoś

Abstract

The analysis of brasses regarding their microstructure, mechanical properties and ecological characteristics has been presented. The influence of characteristic alloying elements contained in the brasses and the possibilities of replacing them with other elements have been assessed. The paper contains the results of studies on the influence of chosen additional elements shaping the structure and properties of unleaded alloys based on Cu-Zn system as the matrix. The research aimed at determining the mechanism and the intensity of influence of such additives as tellurium and bismuth. The microstructures were investigated with the help of light microscopy and scanning electron microscopy with X-ray microanalysis (SEM-EDS) for determining significant changes of the properties.

Open access

G. Tęcza and A. Garbacz-Klempka

Abstract

Widely used in the power and mining industry, cast Hadfield steel is resistant to wear, but only when operating under impact loads. Components made from this alloy exposed to the effect of abrasion under load-free conditions are known to suffer rapid and premature wear. To increase the abrasion resistance of cast high-manganese steel under the conditions where no dynamic loads are operating, primary titanium carbides are formed in the process of cast steel melting, to obtain in the alloy after solidification and heat treatment, the microstructure composed of very hard primary carbides uniformly distributed in the austenitic matrix of a hardness superior to the hardness of common cast Hadfield steel. Hard titanium carbides ultimately improve the wear resistance of components operating under shear conditions. The measured microhardness of the as-cast matrix in samples tested was observed to increase with the increasing content of titanium and was 380 HV0.02 for the content of 0.4%, 410 HV0.02 for the content of 1.5% and 510 HV0.02 for the content of 2 and 2.5%. After solution heat treatment, the microhardness of the matrix was 460÷480 HV0.02 for melts T2, T3 and T6, and 580 HV0.02 for melt T4, and was higher than the values obtained in common cast Hadfield steel (370 HV0.02 in as-cast state and 340÷370 HV0.02 after solution heat treatment). The measured microhardness of alloyed cementite was 1030÷1270 HV0.02; the microhardness of carbides reached even 2650÷4000 HV0.02.

Open access

E. Czekaj, J. Zych, Z. Kwak and A. Garbacz-Klempka

Abstract

Issues connected with high quality casting alloys are important for responsible construction elements working in hard conditions. Traditionally, the quality of aluminium casting alloy refers to such microstructure properties as the presence of inclusions and intermetallic phases or porosity. At present, in most cases, Quality index refers to the level of mechanical properties – especially strength parameters, e.g.: UTS, YS, HB, E (Young’s Modulus), K 1c (stress intensity factor). Quality indexes are often presented as a function of density. However, generally it is known, that operating durability of construction elements depends both on the strength and plastic of the material. Therefore, for several years now, in specialist literature, the concept of quality index (QI) was present, combines these two important qualities of construction material. The work presents the results of QI research for casting hypoeutectic silumin type EN AC-42100 (EN AC-AlSi7Mg0.3), depending on different variants of heat treatment, including jet cooling during solution treatment.

Open access

A. Garbacz-Klempka, Ł. Kowalski, J. Gackowski and M. Perek-Nowak

Abstract

This study characterizes the bronze jewellery recovered from the Lusatian culture urn-field in Mała Kępa (Chełmno land, Poland). Among many common ornaments (e.g. necklaces, rings, pins) the ones giving evidence of a steppe-styled inspiration (nail earrings) were also identified. With the dendritic microstructures revealed, the nail earrings prove the implementing of a lost-wax casting method, whereas some of the castings were further subjected to metalworking. The elemental composition indicates the application of two main types of bronze alloys: Cu-Sn and Cu-Sn-Pb. It has been established that the Lusatian metalworkers were familiar with re-melting the scrap bronze and made themselves capable of roasting the sulphide-rich ores.

The collection from Mała Kępa has been described in terms of its structure and composition. The investigations were made by means of the energy dispersive X-ray fluorescence spectroscopy (ED-XRF), scanning electron microscopy (SEM) coupled with an energy dispersive X - ray analysis system (EDS) and optical microscopy (OM). In order to fingerprint an alloy profile of the castings with a special emphasis on the nail earrings, the data-set (ED-XRF, EDS) was statistically evaluated using multidimensional analyses (FA, DA).

Open access

S. Rzadkosz, A. Garbacz-Klempka, J. Kozana, M. Piękoś and M. Kranc

Abstract

The article presents the research results obtained at the Department of Foundry of Non-Ferrous Metals at the Foundry Faculty of AGH, the University of Science and Technology, in Krakow. The research comprises the processes connected with the technology of melting, refining and making casts based on copper matrix, both contemporary and historical, especially bronzes containing tin, zinc and lead. These issues are well-known but they still pose problems for contemporary foundries. The article presents the results of modifying formulas on the improvement of mechanical properties and limiting casting defects.

Open access

M. Kranc, G. Sikora, M. Górny and A. Garbacz-Klempka

Abstract

The aim of this paper was to attain defect free, pure copper castings with the highest possible electrical conductivity. In this connection, the effect of magnesium additives on the structure, the degree of undercooling (ΔTα = Tα-Tmin, where Tα - the equilibrium solidification temperature, Tmin - the minimum temperature at the beginning of solidification), electrical conductivity, and the oxygen concentration of pure copper castings have been studied. The two magnesium doses have been investigated; namely 0.1 wt.% and 0.2 wt.%. A thermal analysis was performed (using a type-S thermocouple) to determine the cooling curves. The degree of undercooling and recalescence were determined from the cooling and solidification curves, whereas the macrostructure characteristics were conducted based on a metallographic examination. It has been shown that the reaction of Mg causes solidification to transform from exogenous to endogenous. Finally, the results of electrical conductivity have been shown as well as the oxygen concentration for the used Mg additives.

Open access

A. Garbacz-Klempka, M. Wardas-Lasoń, J. Kozana, M. Piękoś and Z. Kwak

Abstract

The research focuses on assessing the metal content, mainly copper, lead, iron and also silver in metallurgical slag samples from the area where historical metallurgical industry functioned. In the smelter located in Mogiła, near Krakow (southern Poland), whose operation is confirmed in sources from 1469, copper was probably refined as well as silver was separated from copper. Based on the change of chemical and soil phase content and also taking cartographic and historical data into account, considering the restrictions resulting from the modern land use the area was determined whose geochemical mapping can point to the location of the 15th century Jan Thurzo’s smelter in Mogiła near Krakow. Moreover, using the same approach with the samples of this kind here as with hazardous waste, an attempt has been made to assess their impact on the environment. Thereby, taking the geoenvironmental conditions into account, potential impact of the industrial activity has been assessed, which probably left large scale changes in the substratum, manifested in the structure, chemical content and soil phase changes. Discovering areas which are contaminated above the standard value can help to identify historical human activities, and finding the context in artefacts allows to treat geochemical anomalies as a geochronological marker. For this purpose the best are bed sediments, at present buried in the ground, of historical ditches draining the area of the supposed smelter. Correlating their qualities with analogical research of archeologically identified slags and other waste material allows for reconstructing the anthropopressure stages and the evaluation of their effects. The operation of Jan Thurzo’s smelter is significant for the history of mining and metallurgy of Poland and Central and Eastern Europe.

Open access

Z. Kwak, S. Rzadkosz, A. Garbacz-Klempka, M. Perek-Nowak and W. Krok

Abstract

Currently there is a constant development in the field of aluminium alloys engineering. This results from, i.a., better understanding of the mechanisms that direct strengthening of these alloys and the role of microalloying. Now it is microalloying in aluminum alloys that is receiving a lot of attention. It affects substantially the macro- and microstructure and kinetics of phase transformation influencing the properties during production and its exploitation. 7xxx series aluminum alloys, based on the Al-Zn-Mg-Cu system, are high-strength alloys, moreover, the presence of Zr and Sr further increases their strength and improves resistance to cracking.

This study aims to present the changes of the properties, depending on the alloy chemical composition and the macro- and microstructure. Therefore, the characteristics in the field of hardness, tensile strength, yield strength and elongation are shown on selected examples. Observations were made on ingot samples obtained by semi-continuous casting, in the homogenized state.

Samples were prepared from aluminum alloys in accordance with PN-EN 573-3: 2013. The advantage of Al-Zn-Mg-Cu alloys are undoubtedly good strength, Light-weight and resistance to corrosion. As widening of the already published studies it is sought to demonstrate the repeatability of the physical parameters in the whole volume of the sample.

Open access

A. Garbacz-Klempka, P. Makarowicz and T. Tokarski

Abstract

The article presents chosen aspects of foundry engineering of the settlement dwellers, including the archaeometric characteristics and metal science analysis of the artefacts, as well as an attempted reconstruction of the production organization. Discovered in Szczepidło (Greater Poland), the foundry workshop is unique in Central European Bronze Age.

This workshop foundry operated roughly XIV-XII Century BC. Its production is evidenced by the presence of markers of the whole production cycle: semi-finished and finished products, production waste, fragments of crucibles and casting ladles with traces of usage, and tools. On this basis, the alloys and foundry technologies used have been described.

The analysis of foundry technology of copper alloys in the settlement area was carried out by observing the surface and structure of the products, semi-finished artefacts and fragments of crucibles by applying optical microscopy (OM), confocal microscopy (CLSM) and Xray radiography (RT). The investigations of compositions were made by means of the energy dispersive X-ray fluorescence spectroscopy (ED-XRF) and scanning electron microscopy (SEM) coupled with an energy dispersive X-ray analysis system (EDS).

Open access

A. Garbacz-Klempka, Z. Kwak, P. L. Żak, M. Szucki, D. Ścibior, T. Stolarczyk and K. Nowak

Abstract

During excavation of the cremation cemetery of urnfield culture in Legnica at Spokojna Street (Lower Silesia, Poland), dated to 1100-700 BC, the largest - so far in Poland – a collection of casting moulds from the Bronze Age was discovered: three moulds for axes casting made out of stone and five moulds for casting sickles, razors, spearhead and chisels, made out of clay. This archaeological find constituted fittings of foundrymen’s graves. In order to perform the complete analysis of moulds in respect of their application in the Bronze Age casting technology analytical methods, as well as, computer aided methods of technological processes were used. Macroscopic investigations were performed and the X-ray fluorescence spectrometry method was used to analyse the chemical composition and metal elements content in mould cavities. Moulds were subjected to three-dimensional scanning and due to the reverse engineering the geometry of castings produced in these moulds were obtained.

The gathered data was used to perform design and research works by means of the MAGMA5 software. Various variants of the pouring process and alloys solidification in these archaeological moulds were simulated. The obtained results were utilised in the interpretation of the Bronze Age casting production in stone and clay moulds, with regard to their quality and possibility of casting defects occurrence being the result of these moulds construction.

The reverse engineering, modelling and computer simulation allowed the analysis of moulds and castings. Investigations of casting moulds together with their digitalisation and reconstruction of casting technology, confirm the high advancement degree of production processes in the Bronze Age.