Search Results

You are looking at 1 - 10 of 13 items for

  • Author: A. Fornalczyk x
Clear All Modify Search
Open access

J. Willner and A. Fornalczyk

Catalytic converters contain the catalytic substance in their structure, which is a mixture of Platinum Group Metals (PGMs): platinum, palladium and rhodium. The prices of these metals and a growing demand for them in the market, make it necessary to recycle spent catalytic converters and recovery of PGMs. The ceramic monolith of catalytic converters is still a predominant material in its construction among of multitude of catalytic converters which are in circulation. In this work attempts were made to leach additional metals (excluding Pt) from comminuted ceramic monolith. Classic leachant oxidizing media 10M H2SO4, HCl and H3PO4 were used considering the possibility of dissolution of the ceramic monolith.

Open access

J. Cebulski, A. Fornalczyk and D. Pasek

Abstract

The paper presents results of the research which aim was to compare the corrosion resistance of alloys based on intermetallic phase after Fe40Al5CrTiB crystallization and after forming the steel corrosion resistant X12CrCoNi2120 species. The tests were performed for steel at temperature of 700°C Fe40Al5CrTiB and for alloy at 1100°C and 9% O2 0.2% HCl + SO2+ 0.08 N2 environment. In the research the changes of weight after corrosion tests, observations of the surface, specified chemical and phase composition of corrosion products were made. The obtained results of the study showed a very good corrosion resistance of Fe40Al5CrTiB alloys in high temperature and environments containing oxygen, sulfur and chlorine as compared to the corrosion resistance of the steel grade X12CrCoNi2120. Results of the research conducted in this scope are the basis for further research.

Open access

M. Saternus, A. Fornalczyk and J. Cebulski

Abstract

At present, every launched car must be equipped with a catalytic converter, in which the precious metals such as platinum, palladium and rhodium play catalytic role. Catalytic converters have a limited life time, therefore they have to be replaced and become a valuable source of platinum group metals (PGM). Currently in the world, used auto catalytic converters are processed in pyrometallurgical or hydrometallurgical way. However, the first step of such treatment should be a chemical analysis. In the paper catalytic carriers were analysed taking into account the level of platinum. Scanning electron microscope was used. The analysis concentrated on testing samples coming from different catalytic carriers. The structure of tested samples, chemical analysis and X-ray energy spectra (EDS) where presented as well as the discussion of obtained results and possible methods of platinum recovery.

Open access

A. Fornalczyk, R. Przylucki, S. Golak and J. Willner

Abstract

The recovery of precious metals is necessary for environmental and economic reasons. Spent catalysts from automotive industry containing precious metals are very attractive recyclable material as the devices have to be periodically renovated and eventually replaced. This paper presents the method of removing platinum from the spent catalytic converters applying lead as a collector metal in a device used to wash out by using mangetohydrodynamic stirrer. The article includes the description of the methods used for modeling of magnetohydrodynamic phenomena (coupled analysis of the electromagnetic, temperature and flow fields) occurring in this particular device. The paper describes the general phenomena and ways of coupling the various physical fields for this type of calculation. The basic computational techniques with a discussion of their advantages and disadvantages are presented.

Open access

A. Fornalczyk, S. Golak, R. Przyłucki and J. Willner

Abstract

The lifetime of a catalytic converters is limited. Today’s environmental regulations require that used converters should be properly recycled as a valuable source of precious metals, Al2O3 and steel scrap. The precious metals used in the devices perform catalytic functions. They are suspended in a ceramic or metal carrier. This paper deals with the recovery of precious metals from automotive converters using a metal-collector method. In order to speed up the washout of the precious metals from the capillary structure of the converter, the movement of the liquid metal-collector was forced by the electromagnetic field. The research was aimed at improving the effective velocity of the liquid metal flow through the carrier by means of a device with a double windings. Various ways of power supply were considered. The calculation experiment was performed as a weakly coupled analysis of the electromagnetic field and flow field.

Open access

J. Willner, A. Fornalczyk, J. Cebulski and K. Janiszewski

Abstract

Automotive catalytic converters have a limited life time, after which the catalyst must be replaced or regenerated. The spent catalytic converters contain small amount of precious metals. Recovery of these metals is essential for environmental and economic reasons. The waste electronic equipment is also an attractive source for recovery of precious metals. Precious metals in electronic scraps are concentrated mainly in printed circuits and integrated circuits - so generally in elements that are the most diverse in their composition. Material heterogeneity of these elements is the reason why there is no universal method for processing this type of scrap. Methods used in the world for recovery of precious metals from spent auto catalytic coverters and electronic wastes by pyrometallurgical and hydrometallurgical methods were mentioned in this paper. The results of simultaneous melting of electronic waste with spent automotive catalysts were presented. The printed circuit boards were used as the carrier and as a source of copper. The precious metals present in the catalyst were collected in copper.

Open access

A. Wojciechowski and K. Fornalczyk

Abstract

Eye-gaze tracking is an aspect of human-computer interaction still growing in popularity,. Tracking human gaze point can help control user interfaces and may help evaluate graphical user interfaces. At the same time professional eye-trackers are very expensive and thus unavailable for most of user interface researchers and small companies. The paper presents very effective, low cost, computer vision based, interactive eye-gaze tracking method. On contrary to other authors results the method achieves very high precision (about 1.5 deg horizontally and 2.5 deg vertically) at 20 fps performance, exploiting a simple HD web camera with reasonable environment restrictions. The paper describes the algorithms used in the eye-gaze tracking method and results of experimental tests, both static absolute point of interest estimation, and dynamic functional gaze controlled cursor steering.

Open access

A. Fornalczyk, M. Kraszewski, J. Willner, J. Kaduková, A. Mrážiková, R. Marcinčáková and O. Velgosová

Metal supported auto catalysts, have been used in sports and racing cars initially, but nowadays their application systematically increases. In Metal Substrate (supported) Converters (MSC), catalytic functions are performed by the Platinum Group Metals (PGM): Pt, Pd, Rh, similarly to the catalysts on ceramic carriers. The contents of these metals make that spent catalytic converters are valuable source of precious metals. All over the world there are many methods for the metals recovery from the ceramic carriers, however, the issue of platinum recovery from metal supported catalysts has not been studied sufficiently yet. The paper presents preliminary results of dissolution of spent automotive catalyst on a metal carrier by means of acids: H2SO4, HCl, HNO3, H3PO4. The main assumption of the research was the dissolution of base metals (Fe, Cr, Al) from metallic carrier of catalyst, avoiding dissolution of PGMs. Dissolution was the most effective when concentrated hydrochloric acid, and 2M sulfuric acid (VI) was used. It was observed that the dust, remaining after leaching, contained platinum in the level of 0.8% and 0.7%, respectively.

Open access

J. Sedlakova-Kadukova, R. Marcincakova, A. Mrazikova, J. Willner and A. Fornalczyk

Abstract

The role of iron in metal-bearing waste bioleaching was studied. Four various types of waste (printed circuit boards (PCBs), Ni-Cd batteries, alkaline batteries and Li-ion batteries) were treated by bioleaching using the acidophilic bacteria A. ferrooxidans and A. thiooxidans (separately or in mixture). Role of main leaching agents (Fe3+ ions or sulphuric acid) was simulated in abiotic experiments. Results showed that oxidation abilities of Fe3+ ions were crucial for recovery of Cu and Zn from PCBs, with the efficiencies of 88% and 100%, respectively. To recover 68% of Ni from PCBs, and 55% and 100% of Ni and Cd, respectively, from Ni-Cd batteries both oxidation action and hydrolysis of Fe3+ were required. The importance of Fe2+ ions as a reducing agent was showed in bioleaching of Co from Li-ion batteries and Mn from alkaline batteries. The efficiency of the processes has increased by 70% and 40% in Co and Mn bioleaching, respectively, in the presence of Fe2+ ions. Based on the results we suggest the integrated biometallurgical model of metal-bearing waste recycling in the effort to develop zero-waste and less energy-dependent technologies.

Open access

J. Willner, J. Kaduková, A. Fornalczyk, A. Mrážiková, R. Marcinčáková and O. Velgosová

Abstract

The main task of automotive catalytic converters is reducing the amount of harmful components of exhaust gases. Metallic catalytic converters are an alternative to standard ceramic catalytic converters. Metallic carriers are usually made from FeCrAl steel, which is covered by a layer of Precious Group Metals (PGMs) acting as a catalyst. There are many methods used for recovery of platinum from ceramic carriers in the world, but the issue of platinum and other metals recovery from metallic carriers is poorly described. The article presents results of preliminary experiments of metals biooxidation (Fe, Cr and Al) from spent catalytic converters with metallic carrier, using bacteria of the Acidithiobacillus genus.