Search Results

1 - 4 of 4 items

  • Author: A. Fedotov x
Clear All Modify Search

Abstract

The article proposes a method of mathematical simulation of electrical machines with thyristor exciters on the basis of the local Fourier transform. The present research demonstrates that this method allows switching from a variable structure model to a constant structure model. Transition from the continuous variables to the discrete variables is used. The numerical example is given in the paper.

Abstract

We have investigated the samples of thermally treated oxyfluoride glass ceramics 50SiO2-25LiO2-20YF3-3ErF3-2YbF2 by means of electron paramagnetic resonance (EPR) techniques. After irradiation of the samples with X-rays, in the EPR spectra a hyperfine structure characteristic of F-centres could be observed in different fluoride crystals. The structure of F-centre in the oxyfluoride glass ceramics containing LiYF4 crystallites is discussed.

Abstract

This paper presents a mathematical model with continuous variables for brushless exciter system of synchronous machines, containing the thyristor elements. Discrete Laplace transform is used for transition from a mathematical model of a system with variable structure in continuous variables to equation finite difference with permanent structure. Then inverse transition is made to a mathematical model in continuous variables with permanent structure.

Abstract

Electron paramagnetic resonance (EPR) measurements have been made for two perpendicular planes in a LiYF4 crystal before and after x-ray irradiation at room temperature. Analysis of the EPR spectrum angular dependence shows the presence of two defects - an impurity ion, which was embedded during the crystal growth process, and an x-ray induced defect with the g-factor of approx. 2.0. Spectral parameters and possible defect models are discussed.