Search Results

1 - 4 of 4 items

  • Author: A. A. Othman x
Clear All Modify Search

Abstract

For 0 < q < 1 and 0 < α < 1, we construct the infinite dimensional q-Gamma white noise measure γα,q by using the Bochner-Minlos theorem. Then we give the chaos decomposition of an L2 space with respect to the measure γα,q via an isomorphism with the 1-mode type interacting Fock space associated to the q-Gamma measure.

Summary

Trichinellosis is a zoonotic disease affecting mainly the temperate regions. The treatment is a challenge for the physician, and the available therapy is far from ideal. Therefore, this work aimed to evaluate the effect of heat shock protein 90 inhibitor, geldanamycin, on the adult worms and larvae of Trichinella spiralis. This research comprised an in vivo study in which T. spiralis-infected mice were treated by two different doses of geldanamycin, thereafter larval count and pathological changes were determined in the muscles. Meanwhile, the in vitro study investigated the effect of two different concentrations of geldanamycin on adult worms and larvae of T. spiralis via transmission electron microscopy. The in vivo study showed significant reduction of muscle larval counts under the effect of geldanamycin. Moreover, characteristic changes were noted as regards the parasite and the inflammatory response. The in vitro study revealed degenerative changes in the body wall of larvae and adults of T. spiralis under the influence of geldanamycin. In conclusion, heat shock protein 90 inhibitor, geldanamycin, seems to have detrimental effects on the adults and larvae of T. spiralis. It, or one of its derivatives, could be an adjuvant to anthelmintic therapy of trichinellosis, but more studies are warranted to establish its usefulness.

Abstract

Use of transdermal patches can evade many issues associated with oral drug delivery, such as first-pass hepatic metabolism, enzymatic digestion attack, drug hydrolysis and degradation in acidic media, drug fluctuations, and gastrointestinal irritation. This article reviews various transdermal patches available in the market, types, structural components, polymer role, and the required assessment tools. Although transdermal patches have medical applications for smoking cessation, pain relief, osteoporosis, contraception, motion sickness, angina pectoris, and cardiac disorders, advances in formulation development are ongoing to make transdermal patches capable of delivering more challenging drugs. Transdermal patches can be tailored and developed according to the physicochemical properties of active and inactive components, and applicability for long-term use. Therefore, a number of chemical approaches and physical techniques for transdermal patch development are under investigation.

Abstract

In recent years, a significant number of epidemiological variations have been observed for fungal infections. In immunocompromised patients, Candida albicans is crucially involved in invasive infections, mostly originating in respiratory tract colonization. The global rise in candidiasis has led researchers to investigate possible correlations between fungal strains virulence profiles and their pathogenic potential, among the most investigated genes being those involved in adherence and biofilm development. In this study, we established the adherence gene profiles of C. albicans strains isolated from respiratory tract secretions in patients hospitalized for cardiovascular diseases and correlated them with the ability of the respective strains to colonize the epithelial cells and form biofilms on the inert substratum. The strains isolated from the lower respiratory tract exhibited the highest adherence capacity and were intensive biofilm producers. The SAP9, ALS3, ALS5, and ALS6 genes were the most frequently detected. There was a significant association between the presence of ALS 3 gene and the cellular substrate colonizing potential of the harboring strains. We also found that the strains expressing SAP9 were more virulent in the phenotypic assays. Detecting the presence of adherence genes from different clinical isolates is a cost-effective tool that would allow researchers to predict the virulence of a certain strain and estimate its potential to adhere to host cells and develop biofilms.