Search Results

1 - 10 of 12 items

  • Author: Żaneta Polkowska x
Clear All Modify Search
Analysis of air mass back trajectories with present and historical volcanic activity and anthropogenic compounds to infer pollution sources in the South Shetland Islands (Antarctica)

Abstract

This work analyses atmospheric transport of natural and anthropogenic pollution to the South Shetland Islands (SSI), with particular reference to the period September 2015 – August 2017. Based on data from the Global Volcanism Program database and air mass back trajectories calculated using the HySPLIT model, it was found that it is possible that in the analysed period volcanic pollution was supplied via long-range transport from South America, and from the South Sandwich Islands. Air masses flowed in over the South Shetland Islands from the South America region relatively frequently – 226 times during the study period, which suggests the additional possibility of anthropogenic pollution being supplied by this means. In certain cases the trajectories also indicated the possibility of atmospheric transport from the New Zealand region, and even from the south-eastern coast of Australia. The analysis of the obtained results is compared against the background of research by other authors. This is done to indicate that research into the origin of chemical compounds in the Antarctic environment should take into account the possible influx of pollutants from remote areas during the sampling period, as well as the possible reemission of compounds accumulated in snow and ice.

Open access
Determination of Surfactants in Environmental Samples. Part I. Cationic Compounds / Oznaczanie Surfaktantów W Próbkach Środowiskowych. Część I. Związki Kationowe

Abstract

Compounds from the group of cationic surfactants are widely applied in household, industrial, cleaning, disinfectant, cosmetic and pharmaceutical products as their specific properties (antimicrobial, emulsifying, anticorrosion, softening). After use, cationic surfactants are disposed to wastewater-treatment plants and finally with effluent water to surface waters due to their incomplete degradation. Moreover, they can freely circulate in different environmental compartments including living organisms. It becomes indispensable to recognize in more detail behavior, fate and biological effects of cationic surfactants. This analytical problem can be solved with use sensitive and reliable analytical techniques at sample preparation step and final determination step. In recent years, during isolation analytes from environmental samples mainly were used liquid-liquid extraction (LLE) - liquid matrices or solid-liquid extraction (SLE) - solid matrices. This technique involves application of toxic solvents (chloroform), is time-consuming and interferences are co-extracted. Nowadays, in scientific centers are carried out research to replace this traditional technique. So far, the following techniques were applied: solid-phase extraction (SPE) or it modification (HF-LPME) - liquid samples; accelerated solvent extraction (ASE) and supercritical fluid extraction (SFE) - solid samples. During the determination of total content of cationic surface active agents in environmental samples were used a traditional spectrophotometry technique and potentiometric titration technique. But those techniques are susceptible of interferences on analysis results (anionic and non-ionic compounds). The chromatographic technique (liquid chromatography) applied at the final determination step gives possibility to determine individual cationic surfactants in solvent extracts of environmental samples. The LC systems coupled with mass spectrometers are most powerful tools during such analysis.

Open access
Determination of Surfactants in Environmental Samples. Part III. Non-Ionic Compounds

Abstract

Non-ionic surface active agents are a diverse group of chemicals which have an uncharged polar head and a non-polar tail. They have different properties due to amphiphilic structure of their molecules. Commercial available non-ionic surfactants consist of the broadest spectrum of compounds in comparison with other types of such agents. Typically, non-ionic compounds found applications in households and industry during formulation of cleaning products, cosmetics, paints, preservative coatings, resins, textiles, pulp and paper, petroleum products or pesticides. Their are one of the most common use class of surfactants which can be potential pollution sources of the different compartment of environment (because of they widely application or discharging treated wastewaters to surface water and sludge in agricultural). It is important to investigate the behavior, environmental fate of non-ionic surfactants and their impact on living organisms (they are toxic and/or can disrupt endocrine functions). To solve such problems should be applied appropriated analytical tools. Sample preparation step is one of the most critical part of analytical procedures in determination of different compounds in environmental matrices. Traditional extraction techniques (LLE - for liquid samples; SLE - for solid samples) are time and solvent-consuming. Developments in this field result in improving isolation efficiency and decreasing solvent consumption (eg SPE and SPME - liquid samples or PLE, SFE and MAE - solid samples). At final determination step can be applied spectrophotometric technique, potentiometric titrametration or tensammetry (determination total concentration of non-ionic surfactants) or chromatographic techniques coupled with appropriated detection techniques (individual analytes). The literature data concerning the concentrations of non-ionic surfactants in the different compartments of the environment can give general view that various ecosystems are polluted by those compounds.

Open access
Determination of Surfactants in Environmental Samples. Part II. Anionic Compounds

Abstract

Surface active agents (SAA) with negative charge of polar group are named as anionic compounds. They are the main constituent of most products containing synthetic surfactants. The linear alkylbenzene sulfonates (LAS), alkyl ethoxysulfates (AES) and alkyl sulfates (AS) are typically applied from this class of compounds. Those surfactants are ingredients of household detergents and cleaners, laundry detergents, cosmetic etc. Moreover they can be applied in the paper, textile and tanning industry as optical brighteners, dispersant, wetting and suspending agents. They can be substrates in the formulation of different products like dyes, pigments, pesticides, exchange resins, plasticizers and pharmaceuticals. Anionic surfactants after use are passed into sewage-treatment plants, where they are partially degraded and adsorbed to sewage sludge (applied in agriculture fields). Finally, the anionic SAA or their degradation products are discharged into surface waters and onto bottom sediments, soils or living organisms. Therefore, it is important (widely application, bioaccumulation, toxicity for living organisms) to investigate the environmental fate of those class of compounds in more details. This research involves determination the concentration of anionic surfactants with use appropriated analytical techniques in environmental samples The official methodology for determination of anionic SAA in liquid samples is based on the ion-pair reaction of these analytes compounds with methylene blue (MB) and an extraction with toxic solvent chloroform. During isolation step of anionic compounds from solid samples are employed Soxhlet and ultrasonic-assisted extraction techniques with use of methanol or mixture of other organic solvents as extraction medium. To overcome disadvantages of those traditional techniques were applied following techniques at sample preparation step from liquid and solid matrices: solid-phase extraction (SPE) and solid-phases microextraction (SPME); accelerated solvent extraction (ASE), microwave-assisted extraction (MAE), supercritical fluid extraction (SFE), respectively. For estimate total concentration of anionic analytes in extracts the spectrophotometric technique is used (as official regulation). For determination concentration of individual analytes were applied gas (derivatization step requires) and liquid chromatography mainly with mass spectrometry technique. The presence of anionic surface active agents was confirmed in various ecosystems (liquid and solid environmental samples).

Open access
Application of Chemometric Analysis to the Study of Snow at the Sudety Mountains, Poland

Abstract

Snow samples were collected during winter 2011/2012 in three posts in the Western Sudety Mountains (Poland) in 3 consecutive phases of snow cover development, i.e. stabilisation (Feb 1st), growth (Mar 15th) and its ablation (Mar 27th). To maintain a fixed number of samples, each snow profile has been divided into six layers, but hydrochemical indications were made for each 10 cm section of core. The complete data set was subjected in the first run of chemometric data interpretation to Cluster Analysis as well as Principal Components Analysis. Further, Self-Organizing Maps, type of neutral network described by Kohonen were used for visualization and interpretation of large high-dimensional data sets. For each site the hierarchical Ward’s method of linkage, squared Euclidean distance as similarity measure, standardized raw data, cluster significance test according to Sneath’s criterion clustering of the chemical variables was done. Afterwards this grouping of the chemical variables was confirmed by the results from Principal Components Analysis. The major conclusion is that the whole system of three sampling sites four patterns of variable groupings are observed: the first one is related to the mineral salt impact; the second one - with the impact of secondary emissions and organic pollutants; next one - with dissolved matter effect and the last one - with oxidative influence, again with relation to anthropogenic activities like smog, coal burning, traffic etc. It might be also concluded that specificity of the samples is determined by the factors responsible for the data set structure and not by particular individual or time factors.

Open access
Surfactants: a real threat to the aquatic geoecosystems of lobelia lakes

Abstract

Lobelia lakes are valuable elements of the natural environment. They are characterised by low trophy, mainly in-forest location and a high transparency of water. However, similarly to other surface waters, they are subjected to increasing anthropogenic pressures, a good indicator of which is the level of surfactants, also called surface-active agents (SAAs). The aim of the study was to evaluate the intensity of anthropogenic pressures in 13 selected lobelia lakes and 14 streams in the catchments of these lakes in Northern Poland, based on SAA concentrations in the waters of these water bodies. We collected one water sample from each of these water bodies and determined the concentrations of cationic, anionic and non-ionic SAAs. We then compared the results with data concerning the ways in which these catchments and water bodies are used. While ionic (cationic and anionic) SAAs were found to be present in all the 27 samples (with concentrations ranging from 0.05 to 0.51 mg dm−3), non-ionic SAAs were identified in 17 of 27 samples (from 0.00 to 2.43 mg dm−3) with three samples largely exceeding the maximum concentration values reported by other authors. We concluded that SAAs are a real threat to the aquatic geoecosystems of lobelia lakes and that the pressures of tourism and leisure have the greatest impact.

Open access
The impact of the Tri-City Ring Road on surface water of small endorheic wetlands

Abstract

The paper presents the results of the impact of the Tri-City Ring Road on small endorheic catchment basins. Particular attention was paid to pollution discharged from the road to the surface water, as well as changes in hydrological conditions in the vicinity of the road. In the study, surface water samples were analysed in terms of their electrolytic conductivity, pH and content of major minerals. GIS was also used to study transformation of local catchment areas as a result of the road construction, determining their relevance to local conditions of drainage. Moreover, the main directions of transformation of surface waters of the small endorheic wetlands caused by runoff water from the ring road were discovered. Research results have shown a strong influence of the road functioning on surface water properties and changes in hydrological conditions of the studied catchment basins.

Open access
Selected anionic and cationic surface active agents: case study on the Kłodnica sediments

Abstract

Surface active agents (surfactants) are a group of chemical compounds, which are used as ingredients of detergents, cleaning products, cosmetics and functional products. After use, wastes containing surfactants or their degradation products are discharged to wastewater treatment plants or directly into surface waters. Due to their specific properties of SAAs, compounds are able to migrate between different environmental compartments such as soil, sediment, water or even living organisms and accumulate there. Surfactants can have a harmful effect on living organisms. They can connect with bioactive molecules and modify their function. Additionally, they have the ability to migrate into cells and cause their damage or death. For these reasons investigation of individual surfactants should be conducted. The presented research has been undertaken to obtain information about SAA contamination of sediment from the River Kłodnica catchment caused by selected anionic (linear alkylbenzene sulfonates (LAS C10-C13)) and cationic (alkylbenzyldimethylammonium (BDMA-C12-16), alkyl trimethyl ammonium (DTMA), hexadecyl piridinium chloride (HP) chlorides) surfactants. This river flows through an area of the Upper Silesia Industrial Region where various companies and other institutions (e.g. coal mining, power plants, metallurgy, hospitals) are located. To determine their concentration the following analytical tools have been applied: accelerated solvent extraction– solid phase extraction – high performance liquid chromatography – UV-Vis (anionic SAAs) and conductivity (cationic SAAs) detectors. In all sediments anionic SAAs have been detected. The concentrations of HTMA and BDMA-C16 in tested samples were higher than other cationic analytes. Generally, levels of surfactants with longer alkyl chains were higher and this observation can confirm their higher susceptibility to sorption on solid surfaces.

Open access
Surfactants in Klodnica River (Katowice, Poland). Part II. Quaternary Ammonium Compounds

Abstract

The paper presents methods of determination of analytes of the cation group (alkyl benzyl dimethyl ammonium (BDDA-C12-C16), alkyl trimethyl ammonium (TMA), hexadecyl piridinium (HP)) in surface water and bottom sediment samples. In the sample preparation phase the solid phase extraction (SPE) or accelerated solvent extraction/ultrasound assisted extraction (ASE/UAE)-SPE technique was used and in the identification phase and quantitative determination of analytes phase - ion chromatography technique (combined with a conductivity detector (CD)). The determined concentrations were in the range below the determined method detection limit (MDL) or method quantification limit (MQL) figures up to 0.142 ±0.023 mg/dm3 or 2014 ±10 μg/kg (liquid and solid samples, respectively). Comparing concentrations of individual analytes found in liquid and solid environmental samples we may notice that surfactants containing a shorter alkyl chain in their molecules were found in higher concentrations in liquid samples (hydrophobicity increasing with the chain length).

Open access
Surfactants in Klodnica River (Katowice, Poland). Part I. Linear Alkylbenzene Sulphonates (LAS)

Abstract

Surfactants are a group of compounds with specific physico-chemical properties and therefore they are used in many spheres of human activity. Surface-active substances undergo various physico-chemical transformations, what enables their migration between different elements of the environment and may lead to its pollution. Selected anionic surfactants were determined in samples of water from the Klodnica river (25 samples) and bottom sediments (25 samples). In most samples the presence of anionic analytes was confirmed. The determined concentration levels were in the range of up to 0.2105±0.0023 mg/dm3 or 0.207±0.010 μg/kg (surface water and bottom sediment samples, respectively). Comparing the concentrations of certain analytes found in liquid and solid environmental samples, it can be noticed that the surfactants containing a shorter alkyl chain in a molecule were present in higher concentrations in liquid samples (hydrophobicity increasing with the increasing length of the chain) and the other way round.

Open access