Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Đorđe Antonijević x
Clear All Modify Search
Open access

Vukoman Jokanović, Božana Čolović, Đorđe Antonijević, Milutin Mićić and Slavoljub Živković

Summary

There is growing need for synthetic tissue replacement materials designed in a way that mimic complex structure of tissues and organs. Among various methods for fabrication of implants (scaffolds), 3D printing is very powerful technique because it enables creation of scaffolds with complex internal structures and high resolution, based on medical data sets. This method allows fabrication of scaffolds with desired macro- and micro-porosity and fully interconnected pore network. Rapid development of 3D printing technologies has enabled various applications from the creation of anatomical training models for complex surgical procedures to the printing of tissue engineering constructs. The aim of current investigations was to develop compatible printers and materials (bioinks) to obtain biomimetic scaffolds, which allow printing of living cells without significant loss of cell viability. The advanced level of such printing assumes “in situ” printing, i.e. printing cells and biomaterials directly onto or in a patient that will reduce recovery time.

Open access

Dijana Trišić, Vukoman Jokanović, Đorđe Antonijević and Dejan Marković

Summary

Stem cells have shown great potential for in vitro tissue engineering, regenerative medicine, cell therapy and pharmaceutical applications. All these applications, especially in clinical trials, will require guided production of high-quality cells. Traditional culture techniques and applications have been performed for the majority of primary and established cell lines and standardized for various analyses. Still, these culture conditions are unable to mimic dynamic and specialized three-dimensional microenvironment of the stem cells’ niche from in vivo conditions. In an attempt to provide biomimetic microenvironments for stem cells in vitro growth, three-dimensional culture techniques have been developed. In our study advantages of newly developed porous scaffolds as the most promising in vitro imitation of niche that provides physical support, enables cell growth, regeneration and neovascularization, while they are replaced in time with newly created tissue was explained. Furthermore, dynamic cultivation techniques have been described, as new way of cell culturing that will be the main subject of our future research. In that manner, by developing an optimal dynamic culturing method, high-quality new cells and tissues would be possible to obtain, for any future clinical application.