Search Results

1 - 4 of 4 items :

  • Author: Zubair Shafiq x
  • Computer Sciences x
  • Computer Sciences, other x
Clear All Modify Search
NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking

Abstract

Although advertising is a popular strategy for mobile app monetization, it is often desirable to block ads in order to improve usability, performance, privacy, and security. In this paper, we propose NoMoAds to block ads served by any app on a mobile device. NoMoAds leverages the network interface as a universal vantage point: it can intercept, inspect, and block outgoing packets from all apps on a mobile device. NoMoAds extracts features from packet headers and/or payload to train machine learning classifiers for detecting ad requests. To evaluate NoMoAds, we collect and label a new dataset using both EasyList and manually created rules. We show that NoMoAds is effective: it achieves an F-score of up to 97.8% and performs well when deployed in the wild. Furthermore, NoMoAds is able to detect mobile ads that are missed by EasyList (more than one-third of ads in our dataset). We also show that NoMoAds is efficient: it performs ad classification on a per-packet basis in real-time. To the best of our knowledge, NoMoAds is the first mobile ad-blocker to effectively and efficiently block ads served across all apps using a machine learning approach.

Open access
Detecting Anti Ad-blockers in the Wild

Abstract

The rise of ad-blockers is viewed as an economic threat by online publishers who primarily rely on online advertising to monetize their services. To address this threat, publishers have started to retaliate by employing anti ad-blockers, which scout for ad-block users and react to them by pushing users to whitelist the website or disable ad-blockers altogether. The clash between ad-blockers and anti ad-blockers has resulted in a new arms race on the Web. In this paper, we present an automated machine learning based approach to identify anti ad-blockers that detect and react to ad-block users. The approach is promising with precision of 94.8% and recall of 93.1%. Our automated approach allows us to conduct a large-scale measurement study of anti ad-blockers on Alexa top-100K websites. We identify 686 websites that make visible changes to their page content in response to ad-block detection. We characterize the spectrum of different strategies used by anti ad-blockers. We find that a majority of publishers use fairly simple first-party anti ad-block scripts. However, we also note the use of third-party anti ad-block services that use more sophisticated tactics to detect and respond to ad-blockers.

Open access
No Place to Hide: Inadvertent Location Privacy Leaks on Twitter

Abstract

There is a natural tension between the desire to share information and keep sensitive information private on online social media. Privacy seeking social media users may seek to keep their location private by avoiding the mentions of location revealing words such as points of interest (POIs), believing this to be enough. In this paper, we show that it is possible to uncover the location of a social media user’s post even when it is not geotagged and does not contain any POI information. Our proposed approach Jasoos achieves this by exploiting the shared vocabulary between users who reveal their location and those who do not. To this end, Jasoos uses a variant of the Naive Bayes algorithm to identify location revealing words or hashtags based on both temporal and atemporal perspectives. Our evaluation using tweets collected from four different states in the United States shows that Jasoos can accurately infer the locations of close to half a million tweets corresponding to more than 20,000 distinct users (i.e., more than 50% of the test users) from the four states. Our work demonstrates that location privacy leaks do occur despite due precautions by a privacy conscious user. We design and evaluate countermeasures based Jasoos to mitigate location privacy leaks.

Open access
A Girl Has No Name: Automated Authorship Obfuscation using Mutant-X

Abstract

Stylometric authorship attribution aims to identify an anonymous or disputed document’s author by examining its writing style. The development of powerful machine learning based stylometric authorship attribution methods presents a serious privacy threat for individuals such as journalists and activists who wish to publish anonymously. Researchers have proposed several authorship obfuscation approaches that try to make appropriate changes (e.g. word/phrase replacements) to evade attribution while preserving semantics. Unfortunately, existing authorship obfuscation approaches are lacking because they either require some manual effort, require significant training data, or do not work for long documents. To address these limitations, we propose a genetic algorithm based random search framework called Mutant-X which can automatically obfuscate text to successfully evade attribution while keeping the semantics of the obfuscated text similar to the original text. Specifically, Mutant-X sequentially makes changes in the text using mutation and crossover techniques while being guided by a fitness function that takes into account both attribution probability and semantic relevance. While Mutant-X requires black-box knowledge of the adversary’s classifier, it does not require any additional training data and also works on documents of any length. We evaluate Mutant-X against a variety of authorship attribution methods on two different text corpora. Our results show that Mutant-X can decrease the accuracy of state-of-the-art authorship attribution methods by as much as 64% while preserving the semantics much better than existing automated authorship obfuscation approaches. While Mutant-X advances the state-of-the-art in automated authorship obfuscation, we find that it does not generalize to a stronger threat model where the adversary uses a different attribution classifier than what Mutant-X assumes. Our findings warrant the need for future research to improve the generalizability (or transferability) of automated authorship obfuscation approaches.

Open access