Search Results

1 - 4 of 4 items :

  • Author: Travis Mayberry x
  • Information Technology x
Clear All Modify Search
Exploiting TLS Client Authentication for Widespread User Tracking

Abstract

TLS, and SSL before it, has long supported the option for clients to authenticate to servers using their own certificates, but this capability has not been widely used. However, with the development of its Push Notification Service, Apple has deployed this technology on millions of devices for the first time. Wachs et al. [42] determined iOS client certificates could be used by passive network adversaries to track individual devices across the internet. Subsequently, Apple has patched their software to fix this vulnerability. We show these countermeasures are not effective by demonstrating three novel active attacks against TLS Client Certificate Authentication that are successful despite the defenses. Additionally, we show these attacks work against all known instances of TLS Client Certificate Authentication, including smart cards like those widely deployed by the Estonian government as part of their Digital ID program. Our attacks include in-path man-in-the-middle versions as well as a more powerful on-path attack that can be carried out without full network control.

Open access
Practical Forward-Secure Range and Sort Queries with Update-Oblivious Linked Lists

Abstract

We revisit the problem of privacy-preserving range search and sort queries on encrypted data in the face of an untrusted data store. Our new protocol RASP has several advantages over existing work. First, RASP strengthens privacy by ensuring forward security: after a query for range [a, b], any new record added to the data store is indistinguishable from random, even if the new record falls within range [a, b]. We are able to accomplish this using only traditional hash and block cipher operations, abstaining from expensive asymmetric cryptography and bilinear pairings. Consequently, RASP is highly practical, even for large database sizes. Additionally, we require only cloud storage and not a computational cloud like related works, which can reduce monetary costs significantly. At the heart of RASP, we develop a new update-oblivious bucket-based data structure. We allow for data to be added to buckets without leaking into which bucket it has been added. As long as a bucket is not explicitly queried, the data store does not learn anything about bucket contents. Furthermore, no information is leaked about data additions following a query. Besides formally proving RASP’s privacy, we also present a practical evaluation of RASP on Amazon Dynamo, demonstrating its efficiency and real world applicability.

Open access
Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol

Abstract

We investigate Apple’s Bluetooth Low Energy (BLE) Continuity protocol, designed to support interoperability and communication between iOS and macOS devices, and show that the price for this seamless experience is leakage of identifying information and behavioral data to passive adversaries. First, we reverse engineer numerous Continuity protocol message types and identify data fields that are transmitted unencrypted. We show that Continuity messages are broadcast over BLE in response to actions such as locking and unlocking a device’s screen, copying and pasting information, making and accepting phone calls, and tapping the screen while it is unlocked. Laboratory experiments reveal a significant flaw in the most recent versions of macOS that defeats BLE Media Access Control (MAC) address randomization entirely by causing the public MAC address to be broadcast. We demonstrate that the format and content of Continuity messages can be used to fingerprint the type and Operating System (OS) version of a device, as well as behaviorally profile users. Finally, we show that predictable sequence numbers in these frames can allow an adversary to track Apple devices across space and time, defeating existing anti-tracking techniques such as MAC address randomization.

Open access
A Study of MAC Address Randomization in Mobile Devices and When it Fails

Abstract

Media Access Control (MAC) address randomization is a privacy technique whereby mobile devices rotate through random hardware addresses in order to prevent observers from singling out their traffic or physical location from other nearby devices. Adoption of this technology, however, has been sporadic and varied across device manufacturers. In this paper, we present the first wide-scale study of MAC address randomization in the wild, including a detailed breakdown of different randomization techniques by operating system, manufacturer, and model of device.

We then identify multiple flaws in these implementations which can be exploited to defeat randomization as performed by existing devices. First, we show that devices commonly make improper use of randomization by sending wireless frames with the true, global address when they should be using a randomized address. We move on to extend the passive identification techniques of Vanhoef et al. to effectively defeat randomization in ~96% of Android phones. Finally, we identify a previously unknown flaw in the way wireless chipsets handle low-level control frames which applies to 100% of devices we tested. This flaw permits an active attack that can be used under certain circumstances to track any existing wireless device.

Open access