Search Results

You are looking at 1 - 3 of 3 items for :

  • Author: T. Elbel x
  • Engineering, other x
Clear All Modify Search
Open access

T. Elbel, Y. Králová and J. Hampl


The powerful tool for defect analysis is an expert system. It is a computer programme based on the knowledge of experts for solving the quality of castings. We present the expert system developed in the VSB-Technical University of Ostrava called ‘ESWOD’. The ESWOD programme consists of three separate modules: identification, diagnosis / causes and prevention / remedy. The identification of casting defects in the actual form of the system is based on their visual aspect.

Open access

T. Elbel and J. Hampl


The contribution summarises the results of oxygen activity determinations, which were measured and registered continuously in castings from cast irons with various types of graphite. The results were used to find the relationship between two variables: natural logarithm of oxygen activities and reverse value of thermodynamic temperature 1 /T. Obtained regression lines were used to calculate oxygen activity at different temperatures, to calculate Gibbs free energy ΔG at the different temperatures and to calculate the single ΔG value for significant temperature of the graphite solidification. The results were processed by a statistical analysis of data files for the different types of graphite with flake, vermicular and spheroidal graphite. Each material has its proper typical oxygen activities range and individual temperature function of Gibbs free energy for analysing and governing casting quality.

Open access

P. Lichy, V. Bednarova and T. Elbel

Casting Routes for Porous Metals Production

The last decade has seen growing interest in professional public about applications of porous metallic materials. Porous metals represent a new type of materials with low densities, large specific surface, and novel physical and mechanical properties, characterized by low density and large specific surface. They are very suitable for specific applications due to good combination of physical and mechanical properties such as high specific strength and high energy absorption capability. Since the discovery of metal foams have been developed many methods and techniques of production in liquid, solid and gas phases. Condition for the use of metal foams - advanced materials with unique usability features, are inexpensive ways to manage their production. Mastering of production of metallic foams with defined structure and properties using gravity casting into sand or metallic foundry moulds will contribute to an expansion of the assortment produced in foundries by completely new type of material, which has unique service properties thanks to its structure, and which fulfils the current demanding ecological requirements. The aim of research conducted at the department of metallurgy and foundry of VSB-Technical University Ostrava is to verify the possibilities of production of metallic foams by conventional foundry processes, to study the process conditions and physical and mechanical properties of metal foam produced. Two procedures are used to create porous metal structures: Infiltration of liquid metal into the mold cavity filled with precursors or preforms and two stage investment casting.