Search Results

1 - 4 of 4 items :

  • Author: Sameer Wagh x
  • Computer Sciences x
  • Databases and Data Mining x
Clear All Modify Search
Differentially Private Oblivious RAM


In this work, we investigate if statistical privacy can enhance the performance of ORAM mechanisms while providing rigorous privacy guarantees. We propose a formal and rigorous framework for developing ORAM protocols with statistical security viz., a differentially private ORAM (DP-ORAM). We present Root ORAM, a family of DP-ORAMs that provide a tunable, multi-dimensional trade-off between the desired bandwidth overhead, local storage and system security.

We theoretically analyze Root ORAM to quantify both its security and performance. We experimentally demonstrate the benefits of Root ORAM and find that (1) Root ORAM can reduce local storage overhead by about 2× for a reasonable values of privacy budget, significantly enhancing performance in memory limited platforms such as trusted execution environments, and (2) Root ORAM allows tunable trade-offs between bandwidth, storage, and privacy, reducing bandwidth overheads by up to 2×-10× (at the cost of increased storage/statistical privacy), enabling significant reductions in ORAM access latencies for cloud environments. We also analyze the privacy guarantees of DP-ORAMs through the lens of information theoretic metrics of Shannon entropy and Min-entropy [16]. Finally, Root ORAM is ideally suited for applications which have a similar access pattern, and we showcase its utility via the application of Private Information Retrieval.

Open access
SecureNN: 3-Party Secure Computation for Neural Network Training


Neural Networks (NN) provide a powerful method for machine learning training and inference. To effectively train, it is desirable for multiple parties to combine their data – however, doing so conflicts with data privacy. In this work, we provide novel three-party secure computation protocols for various NN building blocks such as matrix multiplication, convolutions, Rectified Linear Units, Maxpool, normalization and so on. This enables us to construct three-party secure protocols for training and inference of several NN architectures such that no single party learns any information about the data. Experimentally, we implement our system over Amazon EC2 servers in different settings. Our work advances the state-of-the-art of secure computation for neural networks in three ways:

1. Scalability: We are the first work to provide neural network training on Convolutional Neural Networks (CNNs) that have an accuracy of > 99% on the MNIST dataset;

2. Performance: For secure inference, our system outperforms prior 2 and 3-server works (SecureML, MiniONN, Chameleon, Gazelle) by 6×-113× (with larger gains obtained in more complex networks). Our total execution times are 2 − 4× faster than even just the online times of these works. For secure training, compared to the only prior work (SecureML) that considered a much smaller fully connected network, our protocols are 79× and 7× faster than their 2 and 3-server protocols. In the WAN setting, these improvements are more dramatic and we obtain an improvement of 553×!

3. Security: Our protocols provide two kinds of security: full security (privacy and correctness) against one semi-honest corruption and the notion of privacy against one malicious corruption [Araki et al. CCS’16]. All prior works only provide semi-honest security and ours is the first system to provide any security against malicious adversaries for the secure computation of complex algorithms such as neural network inference and training.

Our gains come from a significant improvement in communication through the elimination of expensive garbled circuits and oblivious transfer protocols.

Open access
DPSelect: A Differential Privacy Based Guard Relay Selection Algorithm for Tor


Recent work has shown that Tor is vulnerable to attacks that manipulate inter-domain routing to compromise user privacy. Proposed solutions such as Counter-RAPTOR [29] attempt to ameliorate this issue by favoring Tor entry relays that have high resilience to these attacks. However, because these defenses bias Tor path selection on the identity of the client, they invariably leak probabilistic information about client identities. In this work, we make the following contributions. First, we identify a novel means to quantify privacy leakage in guard selection algorithms using the metric of Max-Divergence. Max-Divergence ensures that probabilistic privacy loss is within strict bounds while also providing composability over time. Second, we utilize Max-Divergence and multiple notions of entropy to understand privacy loss in the worst-case for Counter-RAPTOR. Our worst-case analysis provides a fresh perspective to the field, as prior work such as Counter-RAPTOR only analyzed average case-privacy loss. Third, we propose modifications to Counter-RAPTOR that incorporate worst-case Max-Divergence in its design. Specifically, we utilize the exponential mechanism (a mechanism for differential privacy) to guarantee a worst-case bound on Max-Divergence/privacy loss. For the quality function used in the exponential mechanism, we show that a Monte-Carlo sampling-based method for stochastic optimization can be used to improve multi-dimensional trade-offs between security, privacy, and performance. Finally, we demonstrate that compared to Counter-RAPTOR, our approach achieves an 83% decrease in Max-Divergence after one guard selection and a 245% increase in worst-case Shannon entropy after 5 guard selections. Notably, experimental evaluations using the Shadow emulator shows that our approach provides these privacy benefits with minimal impact on system performance.

Open access
Guard Placement Attacks on Path Selection Algorithms for Tor


The popularity of Tor has made it an attractive target for a variety of deanonymization and fingerprinting attacks. Location-based path selection algorithms have been proposed as a countermeasure to defend against such attacks. However, adversaries can exploit the location-awareness of these algorithms by strategically placing relays in locations that increase their chances of being selected as a client’s guard. Being chosen as a guard facilitates website fingerprinting and traffic correlation attacks over extended time periods. In this work, we rigorously define and analyze the guard placement attack. We present novel guard placement attacks and show that three state-of-the-art path selection algorithms—Counter-RAPTOR, DeNASA, and LASTor—are vulnerable to these attacks, overcoming defenses considered by all three systems. For instance, in one attack, we show that an adversary contributing only 0.216% of Tor’s total bandwidth can attain an average selection probability of 18.22%, 84× higher than what it would be under Tor currently. Our findings indicate that existing location-based path selection algorithms allow guards to achieve disproportionately high selection probabilities relative to the cost required to run the guard. Finally, we propose and evaluate a generic defense mechanism that provably defends any path selection algorithm against guard placement attacks. We run our defense mechanism on each of the three path selection algorithms, and find that our mechanism significantly enhances the security of these algorithms against guard placement attacks with only minimal impact to the goals or performance of the original algorithms.

Open access