Search Results

You are looking at 1 - 3 of 3 items for :

  • Author: Paulo Pereira x
  • Engineering x
Clear All Modify Search
Open access

Jorge C. Pais, António Ferreira, Caio Santos, Paulo Pereira and Davide Lo Presti

Abstract

The use of crumb rubber in the modification of asphalt has occurred because of the problems related to disposal of scrap tires. However, the use of scrap tires in asphalt pavements, known as asphalt rubber pavements, can minimize environmental impacts and maximize conservation of natural resources. The textile fibers from recycled tires are typically disposed of in landfills or used in energetic valorization, but similar to other fibers, they can be used as a valuable resource in the reinforcement of engineering materials such as asphalt mixtures. Thus, this work aims at studying the use of textile fibers recycled from ground tires in the reinforcement of conventional asphalt mixtures. The application of textile fibers from ground tires was evaluated through laboratory tests on specimens extracted from slabs produced in the laboratory. Indirect tensile tests were performed on a series of nine asphalt mixtures with different fiber and asphalt contents and compared with a conventional mixture. The results obtained from a 50/70 pen asphalt were used to define three asphalt mixture configurations to be used with 35/50 pen asphalt. The results indicate that the textile fibers recycled from used tires can be a valuable resource in the reinforcement of asphalt mixtures.

Open access

Jorge C. Pais, Liseane P. Thives, Paulo A. A. Pereirâ and Glicério Trichês

Abstract

Brazilians mixtures containing asphalt rubber were evaluated by mechanical laboratory tests. A conventional mixture with asphalt CAP-50/70 was produced as a mixture control. With the aim of compare the Brazilians mixtures performance, a Portuguese asphalt rubber mixture was tested as well. The testing set involved the determination of the mechanical properties, fatigue and permanent deformation, of asphalt rubber produced by wet process through two different systems: continuous blend and terminal blend. The asphalt rubber morphology was evaluated in order to determine the compatibility of the systems. The asphalt rubber mixtures exhibit good resistance to permanent deformation and prolonged fatigue life in relation to mixture control. Therefore it is concluded that the application of asphalt rubber alters the characteristics of asphalt mixture in a very beneficial way.

Open access

Elisabete Freitas, Joaquim Tinoco, Francisco Soares, Jocilene Costa, Paulo Cortez and Paulo Pereira

Abstract

The research aimed to establish tyre-road noise models by using a Data Mining approach that allowed to build a predictive model and assess the importance of the tested input variables. The data modelling took into account three learning algorithms and three metrics to define the best predictive model. The variables tested included basic properties of pavement surfaces, macrotexture, megatexture, and unevenness and, for the first time, damping. Also, the importance of those variables was measured by using a sensitivity analysis procedure. Two types of models were set: one with basic variables and another with complex variables, such as megatexture and damping, all as a function of vehicles speed. More detailed models were additionally set by the speed level. As a result, several models with very good tyre-road noise predictive capacity were achieved. The most relevant variables were Speed, Temperature, Aggregate size, Mean Profile Depth, and Damping, which had the highest importance, even though influenced by speed. Megatexture and IRI had the lowest importance. The applicability of the models developed in this work is relevant for trucks tyre-noise prediction, represented by the AVON V 4 test tyre, at the early stage of road pavements use. Therefore, the obtained models are highly useful for the design of pavements and for noise prediction by road authorities and contractors.