Search Results

You are looking at 1 - 2 of 2 items for :

  • Author: Michał Nowicki x
  • Mathematics x
Clear All Modify Search
Open access

Adam Nowicki, Michał Grochowski and Kazimierz Duzinkiewicz

Kernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for building a data-driven model of a non-linear system-the water distribution system of the Chojnice town (Poland). This model is utilised for fault detection with the emphasis on water leakage detection. A systematic description of the system’s framework is followed by evaluation of its performance. Simulations prove that the presented approach is both flexible and efficient.

Open access

Marek Kraft, Michał Nowicki, Rudi Penne, Adam Schmidt and Piotr Skrzypczyński

Abstract

The problem of position and orientation estimation for an active vision sensor that moves with respect to the full six degrees of freedom is considered. The proposed approach is based on point features extracted from RGB-D data. This work focuses on efficient point feature extraction algorithms and on methods for the management of a set of features in a single RGB-D data frame. While the fast, RGB-D-based visual odometry system described in this paper builds upon our previous results as to the general architecture, the important novel elements introduced here are aimed at improving the precision and robustness of the motion estimate computed from the matching point features of two RGB-D frames. Moreover, we demonstrate that the visual odometry system can serve as the front-end for a pose-based simultaneous localization and mapping solution. The proposed solutions are tested on publicly available data sets to ensure that the results are scientifically verifiable. The experimental results demonstrate gains due to the improved feature extraction and management mechanisms, whereas the performance of the whole navigation system compares favorably to results known from the literature.