Search Results

1 - 10 of 17 items :

  • Author: Michał Jankowski x
  • Molecular Biology x
Clear All Modify Search
Characteristic of factors influencing the proper course of folliculogenesis in mammals

Abstract

Folliculogenesis is the process of ovarian follicle formation,, taking presence during foetal period. During the follicular development, oogoniums undergo meiosis and oocytes are formed. In the ovaries of new born sows, primary and secondary follicles are present and, 90 days after birth, tertiary follicles appear. During development in the ovarian follicles growth of granulosa cells and differentiation of the thecal cells can be observed. A cavity filled with follicular fluid appears. Granulosa cells are divided into: mural cells and corona radiata, which together with the oocyte form the cumulus oophorus. Corona radiata cells, mural layers and oolemma contact each other by a network of gap junctions. Secreted from the pituitary gland, FSH and LH gonadotropin hormones act on receptors located in granular and follicular cells. In the postnatal life tertiary follicles and Graafian follicles are formed. When the follicle reaches a diameter of 1 mm, further growth depends on the secretion of gonadotropins. Mature ovarian follicles produce: progestins, androgens and oestrogens. The growth, differentiation and steroidogenic activity of ovarian follicles, in addition to FSH and LH, is also affected by prolactin, oxytocin, steroid and protein hormones, numerous proteins from the cytokine and interleukin family, metabolic hormones like insulin, glucocorticoids, leptin, thyroid hormones and growth hormones. Despite numerous studies, many processes related to folliculogenesis have not been discovered Learning the mechanisms regulating reproductive processes would allow to easily distinguish pathological processes and discover more and more genes and mechanisms of their expression in cells that build ovarian follicles.

Open access
Cytoplasmic and nuclear maturation of oocytes in mammals – living in the shadow of cells developmental capability

Abstract

The pig is a polyestrous animal in which the ovarian cycle lasts about 21 days and results in ovulation of 10-25 oocytes. Ovum reaches 120-150 μm in diameter, with the surrounding corona radiata providing communication with the environment. The zona pellucida is composed of glycoproteins: ZP1, ZP2, ZP3. In the course of oogenesis, RNA and protein accumulation for embryonic development occurs. Maternal mRNA is the template for protein production. Nuclear, cytoplasmic and genomic maturity condition the ability of the ovum to undergo fertilization. There are several differences in protein expression profiles observed between in vitro and in vivo conditions. Oogenesis is the process of differentiating female primary sex cells into gametes. During development gonocytes migrate from the yolk sac into the primary gonads with TGF-1, fibronectin, and laminin regulating this process. Cell cycle is blocked in dictyotene. Primary oocyte maturation is resumed before each ovulation and lasts until the next block in metaphase II. At the moment of penetration of the sperm into the ovum, the metaphase block is broken. The oocytes, surrounded by a single layer of granular cells, form the ovarian follicle. The exchange of signals between the oocyte and the cumulus cells done by gap-junctions, as well as various endo and paracrine signals. The contact between the corona radiata cells provides substances necessary for growth, through the same gap junctions. Studies on follicular cells can be used to amplify the knowledge of gene expression in these cells, in order to open way for potential clinical applications.

Open access
Pathogenesis and pathophysiology of ovarian follicular cysts in mammals

Abstract

Ovarian cysts remain to be one of the most common and serious problems in reproduction of farm animals, as well as humans. Apart from causing the fall in reproductive potential of the ovaries, occupying the place in which folliculogenesis and oogenesis occur, they also cause hormone imbalances, by preventing corpus luteum formation, hence lowering the amount of steroid hormone production. While singular cysts rarely affect fertility, hormone fluctuations that are associated with their presence promotes their multiplication, which usually has more adverse effects. While the cysts are easily detectable in humans, possessing distinct echography while examined by ultrasound, multiple factors prevent widespread use of effective detection methods among large herds of farm animals. Because of lack of noticeable symptoms of early stages of such malignancies, they rarely get detected before the animal stops to exhibit symptoms of heat. That causes scientific research to be focused on not only methods of detection, but also the ways to negate the effects of ovarian cysts and bring the affected specimen back to reproductive potential. Despite that, high costs of diagnosis and treatment, cause them to be uncommon on commercial farms. As lack of fertility eliminates animals from breeding purposed herds, ovarian cysts persist as a cause of large losses of the animal husbandry business. Continuous research, focused on natural examples of ovarian cysts should be conducted, in order to improve methods of detection, prevention, treatment and recovery from the effects of ovarian cysts.

Open access
The use of mesenchymal stem cells in veterinary medicine

Abstract

Constant advances in medicine, both human and veterinary, lead to continuous discovery of new drugs and treatments. Recently, the aspect of stem cell use in regenerative medicine has been very popular. There are still too few clinical trials on animals that could precisely estimate the therapeutic efficacy of cell therapy. However, stem cells are a source of extraordinary potential for multiplication and differentiation which, if used properly, can prove to be an effective mean of treatment of numerous diseases that are currently considered untreatable. The purpose of review is the characterization and clinical use of stem cells in mostly occurring diseases. Particular attention has been given to the issue of mesenchymal stromal cells, which so far have been most widely used in clinical practice. Current research into stem cells has allowed scientists to discover many different types of these cells, describe their characteristics and divide them into groups, with the most important being embryonic stem cells and somatic (adult) stem cells. Adult stem cells, due to their availability and lack of ethical problems, are used in veterinary practice. Different types of mesenchymal stem cells are distinguished, based on their origin. Adipose tissue derived stem cells and stromal vascular fraction find the widest clinical application. In veterinary medicine, stem cells therapies are most commonly used in the case of horse orthopedic injuries and in diseases of various origin in dogs and cats. While further research is needed to confirm the effectiveness of cell therapies, they have much potential to find plenty of potential applications in future medicine.

Open access
Transforming growth factor (TGF) – is it a key protein in mammalian reproductive biology?

Abstract

The superfamily of transforming growth factors β (TGF-β) consists of cytokines that are crucial in regulating the organism’s biological functions and includes three isoforms of TGF-β protein, Anti-Müllerian Hormone (AMH), inhibin A and B, activins, 20 bone morphogenetic proteins (BMP1-20) and 9 growth factors (GDF1-9). Their signal transduction pathway involves three types of membrane receptors that exhibit a serine/threonine kinase activity, as well as the Smad proteins. After ligand binding, the Smad proteins are phosphorylated and translocated to the nucleus, where they interact with transcription factors and affect gene expression. TGF-β family members are involved in cell growth and differentiation, as well as chemo-taxis and apoptosis, and play an important role during an inflammation. Defects in TGF-β proteins or in their signalling pathway underlie many severe diseases, such as systemic lupus, systemic scleroderma, bronchial asthma, atherosclerosis, hyperthyroidism or cancer. These factors are also crucial in mammal reproductive functions, as they are involved in folliculogenesis, steroidogenesis, ovulation, maternal-embryo interaction, embryo development and uterine decidualization. Their defects result in issues with fertility. This review focuses on the relevance of TGF-β family members in a mammal reproduction with an emphasis on three TGF-β isoforms, inhibins A and B, GDF-9 and their signal transduction pathway.

Open access
Detection of lipoprotein X (LPX) – a challenge in patients with severe hypercholesterolaemia

Summary

Background

Lipoprotein X (LpX) is an abnormal lipoprotein fraction, which can be detected in patients with severe hypercholesterolaemia and cholestatic liver disease. LpX is composed largely of phospholipid and free cholesterol, with small amounts of triglyceride, cholesteryl ester and protein. There are no widely available methods for direct measurement of LpX in routine laboratory practice. We present the heterogeneity of clinical and laboratory manifestations of the presence of LpX, a phenomenon which hinders LpX detection.

Methods

The study was conducted on a 26-year-old female after liver transplantation (LTx) with severely elevated total cholesterol (TC) of 38 mmol/L and increased cholestatic liver enzymes. TC, free cholesterol (FC), cholesteryl esters (CE), triglycerides, phospholipids, HDL-C, LDL-C, and apolipoproteins AI and B were measured. TC/apoB and FC:CE ratios were calculated. Lipoprotein electrophoresis was performed using a commercially available kit and laboratory-prepared agarose gel.

Results

Commercially available electrophoresis failed to demonstrate the presence of LpX. Laboratory-prepared gel clearly revealed the presence of lipoproteins with γ mobility, characteristic of LpX. The TC/apoB ratio was elevated and the CE level was reduced, confirming the presence of LpX. Regular lipoprotein apheresis was applied as the method of choice in LpX disease and a bridge to reLTx due to chronic liver insufficiency.

Conclusions

The detection of LpX is crucial as it may influence the method of treatment. As routinely available biochemical laboratory tests do not always indicate the presence of LpX, in severe hypercholesterolaemia with cholestasis, any discrepancy between electrophoresis and biochemical tests should raise suspicions of LpX disease.

Open access
Epithelium morphogenesis and oviduct development are regulated by significant increase of expression of genes after long-term in vitro primary culture – a microarray assays

Abstract

The correct oviductal development and morphogenesis of its epithelium are crucial factors influencing female fertility. Oviduct is involved in maintaining an optimal environment for gametes and preimplantation embryo development; secretory oviductal epithelial cells (OECs) synthesize components of oviductal fluid. Oviductal epithelium also participates in sperm binding and its hyperactivation. For better understanding of the genetic bases that underlay porcine oviductal development, OECs were isolated from porcine oviducts and established long-term primary culture. A microarray approach was utilized to determine the differentially expressed genes during specific time periods. Cells were harvested on day 7, 15 and 30 of in vitro primary culture and their RNA was isolated. Gene expression was analyzed and statistical analysis was performed. 48 differentially expressed genes belonging to “tube morphogenesis”, “tube development”, “morphogenesis of an epithelium”, “morphogenesis of branching structure” and “morphogenesis of branching epithelium” GO BP terms were selected, of which 10 most upregulated include BMP4, ARG1, SLIT2, FGFR1, DAB2, TNC, EPAS1, HHEX, ITGB3 and LOX. The results help to shed light on the porcine oviductal development and its epithelial morphogenesis, and show that after long-term culture the OECs still proliferate and maintain their tube forming properties.

Open access
Ontology groups representing angiogenesis and blood vessels development are highly up-regulated during porcine oviductal epithelial cells long-term real-time proliferation – a primary cell culture approach

Abstract

The morphological and biochemical modification of oviductal epithelial cells (OECs) belongs to the group of compound processes responsible for proper oocyte transport and successful fertilization. The cellular interactions between cumulus-oocyte complexes (COCs) and oviductal epithelial cells (OECs) are crucial for this unique mechanism. In the present study we have analyzed angiogenesis and blood vessel development processes at transcript levels. By employing microarrays, four ontological groups associated with these mechanisms have been described. Differentially expressed genes belonging to the “angiogenesis”, “blood circulation”, “blood vessel development” and “blood vessel morphogenesis” GO BP terms were investigated as a potential markers for the creation of new blood vessels in cells under in vitro primary culture conditions.

Open access
Fatty Acids Related Genes Expression Undergo Substantial Changes in Porcine Oviductal Epithelial Cells During Long-Term Primary Culture

Abstract

The process of reproduction requires several factors, leading to successful fertilization of an oocyte by a single spermatozoon. One of them is the complete maturity of an oocyte, which is acquired during long stages of folliculogenesis and oogenesis. Additionally, the oviduct, composed of oviductal epithelial cells (OECs), has a prominent influence on this event through sperm modification and supporting oocyte’s movement towards uterus. OECs were isolated from porcine oviducts. Cells were kept in primary in vitro culture for 30 days. After 24h and on days 7, 15 and 30 cells were harvested, and RNA was isolated. Transcript changes were analyzed using microarrays. Fatty acids biosynthetic process and fatty acids transport ontology groups were selected for analysis and described. Results of this study indicated that majority of genes in both ontology groups were up-regulated on day 7, 15 and 30 of primary in vitro culture. We analyzed genes involved in fatty acids biosynthetic process, including: GGT1, PTGES, INSIG1, SCD, ACSL3, FADS2, FADS1, ACSS2, ALOX5AP, ACADL, SYK, ACACA, HSD17B8, FADS3, OXSM, and transport, including: ABCC2, ACSL4, FABP3, PLA2G3, PPARA, SYK, PPARD, ACACA and P2RX7. Elevated levels of fatty acids in bovine and human oviducts are known to reduce proliferation capacity of OECs and promote inflammatory responses in their microenvironment. Most of measured genes could not be connected to reproductive events. However, the alterations in cellular proliferation, differentiation and genes expression during in vitro long-term culture were significant. Thus, we can treat them as putative markers of changes in OECs physiology.

Open access
The differentiation and transdifferentiation of epithelial cells in vitro – is it a new strategy in regenerative biomedicine?

Abstract

In modern medical research, stem cells are one of the main focuses, believed to be able to provide the solution to many currently unsolvable medical cases. However, their extraordinary potential for differentiation creates much obstacles in their potential application in clinical environment, without understanding the whole array of molecular mechanisms that drive the processes associated with their development and maturation. Because of that, there is a large need for studies that concern the most basic levels of those processes. Progenitor stem cells are a favorable target, as they are relatively lineage committed, making the amount of signaling required to reach the final form much lower. Their presence in the adult organism is also an advantage in their potential use, as they can be extracted without the need for storage from the moment of pre-natal development or birth. Epithelial tissues, because of their usual location or function, exhibit extraordinary level of plasticity and proliferative potential. That fact makes them one of the top candidates for use in applications such as tissue engineering, cell based therapies, regenerative and reconstructive medicine. The potential clinical application, however, need to be based on well developed methods, in order to provide an effective treatment without causing major side effects. To achieve that goal, a large amount of research, aiming to analyze the molecular basics of proliferation and differentiation of epithelial stem cells, and stem cells in general, needs to be conducted.

Open access