Search Results

You are looking at 1 - 2 of 2 items for :

  • Author: M. Hebda x
  • Materials Sciences x
Clear All Modify Search
Open access

M. Hebda, S. Gadek and J. Kazior

Due to an excellent combination of toughness and strength, bainitic-austenitic dual phase steels with silicon addition have many applications in the industry. However, silicon has a high affinity to oxygen and, therefore, its introduction to the alloy is problematic during the classical sintering processes of mixing powders. Mechanical alloying (MA) offers one of the most attractive alternatives to the introduction of silicon to Astaloy CrM powders.

The aim of the present study was to determine the influence of the MA process on changes in particle size distribution, work hardening and sintering behaviour of the investigated powder mixture - Astaloy CrM powder with the addition of 2 wt.% stearic acid and 2 wt.% silicon carbide alloyed under different conditions. The practical aspect of this study was to develop and apply a common and inexpensive method of die-pressing to compact a powder mixture prepared by the MA process.

Open access

M. Hebda, H. Dębecka, K. Miernik and J. Kazior

Abstract

The influence of adding different amounts of silicon carbide on the properties (density, transverse rupture strength, microhardness and corrosion resistance) and microstructure of low alloy steel was investigated. Samples were prepared by mechanical alloying (MA) process and sintered by spark plasma sintering (SPS) technique. After the SPS process, half of each of obtained samples was heat-treated in a vacuum furnace. The results show that the high-density materials have been achieved. Homogeneous and fine microstructure was obtained. The heat treatment that followed the SPS process resulted in an increase in the mechanical and plastic properties of samples with the addition 1wt. % of silicon carbide. The investigated compositions containing 1 wt.% of SiC had better corrosion resistance than samples with 3 wt.% of silicon carbide addition. Moreover, corrosion resistance of the samples with 1 wt.% of SiC can further be improved by applying heat treatment.