Search Results

1 - 2 of 2 items :

  • Author: Krzysztof Strzelec x
  • Biotechnology x
  • Chemical Engineering x
  • Process Engineering x
Clear All Modify Search
Magnetic recykling of complex catalysts immobilized on thiol-functionalized polymer supports

Abstract

In this work, the application of the thiol-functionalized epoxy resin encapsulated on magnetic core as supports for palladium catalysts is reported. The study focuses on obtaining of heterogeneous catalysts which can be separated by magnetic field. Palladium complex catalyst [PdCl2(PhCN)2] has been heterogenized by anchoring to these supports via ligand exchange reaction. The characterization of polymeric supports and heterogenized palladium catalysts has involved research methods like time-of-flight secondary ion mass spectrometry (TOF-SIMS), scanning electron microscopy (SEM) and nitrogen BET surface area measurements. The activity and stability during long-term use of the investigated catalytic systems were tested in a Heck and hydrogenation reaction. The influence of the type of thiols used as epoxy hardeners and the morphology of the supports on the catalytic properties of epoxy-supported palladium catalysts was discussed.

Open access
Novel biocompatible transversal pneumatic artificial muscles made of PDMS/PET satin composite

Abstract

In this study novel transversal pneumatic artificial muscles (TPAM), made from composite – poly(dimethylsiloxane) (PDMS) matrix membrane and poly(ethylene terephthalate) (PET) satin reinforcement, are presented. Miniature TPAM consists of a flexible internal braid (IB) reinforcing the membrane and the external braid (EB). EB, with fibers arranged transversely to the IB, is placed laterally. Differently prepared TPAMs were tested for their effectiveness as actuators for robot drive and the PDMS/PET composite suitability was evaluated for applications in human gastrointestinal tract (chemical resistance, thermal characteristic). FT-IR spectra of the composite were compared for study PDMS impregnation process of PET satin and effect of immersion in selected solution. The composite shows outstanding biocompatibility and the muscles have competitive static load characteristics in comparison with other pneumatic artificial muscles (PAM). These results lead to believe, that in the near future painless examination of the gastrointestinal tract using a secure robot will be possible.

Open access