Search Results

1 - 5 of 5 items :

  • Author: Jiří Přibil x
  • Engineering, other x
Clear All Modify Search
Storytelling Voice Conversion: Evaluation Experiment Using Gaussian Mixture Models

Abstract

In the development of the voice conversion and personification of the text-to-speech (TTS) systems, it is very necessary to have feedback information about the users’ opinion on the resulting synthetic speech quality. Therefore, the main aim of the experiments described in this paper was to find out whether the classifier based on Gaussian mixture models (GMM) could be applied for evaluation of different storytelling voices created by transformation of the sentences generated by the Czech and Slovak TTS system. We suppose that it is possible to combine this GMM-based statistical evaluation with the classical one in the form of listening tests or it can replace them. The results obtained in this way were in good correlation with the results of the conventional listening test, so they confirm practical usability of the developed GMM classifier. With the help of the performed analysis, the optimal setting of the initial parameters and the structure of the input feature set for recognition of the storytelling voices was finally determined.

Open access
An experiment with spectral analysis of emotional speech affected by orthodontic appliances

The contribution describes the effect of the fixed and removable orthodontic appliances on spectral properties of emotional speech. Spectral changes were analyzed and evaluated by spectrograms and mean Welch’s periodograms. This alternative approach to the standard listening test enables to obtain objective comparison based on statistical analysis by ANOVA and hypothesis tests. Obtained results of analysis performed on short sentences of a female speaker in four emotional states (joyous, sad, angry, and neutral) show that, first of all, the removable orthodontic appliance affects the spectrograms of produced speech.

Open access
GMM-based speaker age and gender classification in Czech and Slovak

Abstract

The paper describes an experiment with using the Gaussian mixture models (GMM) for automatic classification of the speaker age and gender. It analyses and compares the influence of different number of mixtures and different types of speech features used for GMM gender/age classification. Dependence of the computational complexity on the number of used mixtures is also analysed. Finally, the GMM classification accuracy is compared with the output of the conventional listening tests. The results of these objective and subjective evaluations are in correspondence.

Open access
Evaluation of speaker de-identification based on voice gender and age conversion

Abstract

Two basic tasks are covered in this paper. The first one consists in the design and practical testing of a new method for voice de-identification that changes the apparent age and/or gender of a speaker by multi-segmental frequency scale transformation combined with prosody modification. The second task is aimed at verification of applicability of a classifier based on Gaussian mixture models (GMM) to detect the original Czech and Slovak speakers after applied voice deidentification. The performed experiments confirm functionality of the developed gender and age conversion for all selected types of de-identification which can be objectively evaluated by the GMM-based open-set classifier. The original speaker detection accuracy was compared also for sentences uttered by German and English speakers showing language independence of the proposed method.

Open access
EVALUATION OF SPECTRAL AND PROSODIC FEATURES OF SPEECH AFFECTED BY ORTHODONTIC APPLIANCES USING THE GMM CLASSIFIER

Abstract

The paper describes our experiment with using the Gaussian mixture models (GMM) for classification of speech uttered by a person wearing orthodontic appliances. For the GMM classification, the input feature vectors comprise the basic and the complementary spectral properties as well as the supra-segmental parameters. Dependence of classification correctness on the number of the parameters in the input feature vector and on the computation complexity is also evaluated. In addition, an influence of the initial setting of the parameters for GMM training process was analyzed. Obtained recognition results are compared visually in the form of graphs as well as numerically in the form of tables and confusion matrices for tested sentences uttered using three configurations of orthodontic appliances.

Open access