Search Results

You are looking at 1 - 8 of 8 items for :

  • Author: J. Yang x
  • Materials Sciences x
Clear All Modify Search
Open access

S. Yang and J.-Gon. Kim

Abstract

In future, more mobile devices with different frequencies will be used at the same time. Therefore, it is expected that the trouble caused by wave interference between devices will be further intensified. In order to prevent this trouble, investigation of selective frequency transmission or absorption material is required. In this paper, magnetic properties of nickel-zinc-copper ferrite nano powder was researched as wave absorber. (Nia-Znb)xCu1-xFe2O4(NZCF) nanoparticles were fabricated by the sol-gel method. The influence of copper substitution on lattice parameter change was analyzed by X-ray diffraction (XRD), particle size was analyzed by scanning electron microscopy (SEM), and Magnetic properties analyzed by vibrating sample magnetometer (VSM). The NZCF and Nickel-zinc ferrite (NZF) lattice parameter difference was 0.028 Å and particle size was calculated as 30 nm with the XRD peak. The VSM results of (Ni0.3-Zn0.3)0.6Cu1-0.6Fe2O4 annealed sample at 700°C for 3hous were 58.5 emu/g (Ms), 22.8 Oe (Hc). It was the most suitable magnetic properties for wave absorber in this investigation.

Open access

H. Rudianto, G.J. Jang, S.S. Yang, Y.J. Kim and I. Dlouhy

Abstract

Premix Al-5.5Zn-2.5Mg-0.5Cu alloy powder was analyzed as matrix in this research. Gas atomized powder Al-9Si with 20% volume fraction of SiC particles was used as reinforcement and added into the alloy with varied concentration. Mix powders were compacted by dual action press with compaction pressure of 700 MPa. High volume fraction of SiC particles gave lower green density due to resistance of SiC particles to plastic deformation during compaction process and resulted voids between particles and this might reduce sinterability of this mix powder. Sintering was carried out under ultra high purity nitrogen gas from 565°-580°C for 1 hour. High content of premix Al-5.5Zn-2.5Mg-0.5Cu alloy powder gave better sintering density and reached up to 98% relative. Void between particles, oxide layer on aluminum powder and lower wettability between matrix and reinforcement particles lead to uncompleted liquid phase sintering, and resulted on lower sintering density and mechanical properties on powder with high content of SiC particles. Mix powder with wt90% of Alumix 431D and wt10% of Al-9Si-vf20SiC powder gave higher tensile strength compare to another mix powder for 270 MPa. From chemical compositions, sintering precipitates might form after sintering such as MgZn2, CuAl2 and Mg2Si. X-ray diffraction, DSC-TGA, and SEM were used to characterize these materials.

Open access

S. Yang, K.-Pil. Jeong, S.-Y. Park and J.-Gon. Kim

Abstract

Due to the rapid development of the information communication industries, it is expected that next-generation mobile communication devices in the data communication environment will be used at the same time in the L~X band (1–12 GHz). To mutual electric wave interference prevention, research on wave absorbers in L~X band is needed. In this paper, barium ferrite was researched as L~X band wave absorber. The Barium ferrite (BaM, Ba ferrite) substituted by divalent ions (Co2+, Cu2+, Ni2+, Zn2+) and tetravalent ion (Ti4+). The substituted Ba ferrite nanoparticles were fabricated by sol-gel process. Lattice parameter, particle size, magnetic properties, and reflection loss were analyzed by X-ray diffraction (X-RD), a Vibrating Sample Magnetometer (VSM), and a Network Analyzer. Lattice parameter of Ba ferrite was changed 0.0005 to 0.0078 Å in a-b direction, and 0.0187 to 0.0445 Å in c-direction by substituted elements, and it influenced on magnetic anisotropy. In addition, Co-Ti substitution elements influenced that coercive force decrease 5,739 to 2,240 Oe. Moreover, reflection loss frequencies were shifted from 16.3 GHz to 14.4 and 17.4 GHz by substituted elements Co-Ti and Zn-Ti.

Open access

H.S. Yang, D.H. Jang and K.J. Lee

Abstract

FeCrAl is comprised essentially of Fe, Cr, Al and generally considered as metallic substrates for catalyst support because of its advantage in the high-temperature corrosion resistance, high mechanical strength, and ductility. Oxidation film and its adhesion on FeCrAl surface with aluminum are important for catalyst life. Therefore various appropriate surface treatments such as thermal oxidation, Sol, PVD, CVD has studied. In this research, PEO (plasma electrolytic oxidation) process was applied to form the aluminum oxide on FeCrAl surface, and the formed oxide particle according to process conditions such as electric energy and oxidation time were investigated. Microstructure and aluminum oxide particle on FeCrAl surface after PEO process was observed by FE-SEM and EDS with element mapping analysis. The study presents possibility of aluminum oxide formation by electro-chemical coating process without any pretreatment of FeCrAl.

Open access

W. Yang, H. Xiu, Y. Xiong, J. Wang, C. Yuan, J. Wei and Z. Zhou

Abstract

(Na0.52K0.44Li0.04)0.97La0.01Ta0.20Nb0.80O3 (KNLTN-La0.01) lead-free subtransparent ceramics was prepared by a conventional sintering technique. The structure and the optical properties of the ceramics were investigated. The room temperature crystallographic indexing revealed the ABO3 perovskite type, tetragonal phase and P4mm point group in the ceramics. The surface and fractured surface SEM micrographs showed a dense microstructure with few micropores in KNLTN-La0.01 ceramics, which was obviously better than for the pure KNLTN ceramics. The refractive indexes of the films were investigated by an ellipsometer and the results show that the KNLTN-La0.01 subtransparent ceramics reveals significant wavelength dependent dispersion. The refractive index ranges from 2.14 to 2.06 with the wavelength increase from 380 nm to 900 nm. The dispersive behavior was analyzed by three parameters of Cauchy dispersion model and the values of the parameters A, B and C are 2.0610±0.0005, 0.0054±0.0003 and 0.00069±0.00004, respectively.

Open access

J. H. Gu, Z. Lu, L. Long, Z. Y. Zhong, C. Y. Yang and J. Hou

Abstract

Highly conductive gallium-doped zinc oxide (GZO) transparent thin films were deposited on glass substrates by RF mag­netron sputtering. The deposited films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), four-point probe and UV-Vis spectrophotometer, respectively. The effect of growth temperature on the structure and optoelectrical properties of the films was investigated. The results demonstrate that high quality GZO films oriented with their crystal­lographic c-axis perpendicular to the substrates are obtained. The structure and optoelectrical properties of the films are highly dependent on the growth temperature. It is found that with increasing growth temperature, the average visible transmittance of the deposited films is enhanced and the residual stress in the thin films is obviously relaxed. The GZO films deposited at the growth temperature of 400°C, which have the largest grain size (74.3 nm), the lowest electrical resistivity (1.31×10-3 Ω·cm) and the maximum figure of merit (1.46×1O-2Ω-1), exhibit the best optoelectrical properties. Furthermore, the optical proper­ties of the deposited films were determined by the optical characterization methods and the optical energy-gaps were evaluated by extrapolation method. A blue shift of the optical energy gap is observed with an increase in the growth temperature.

Open access

G.-S. Moon, T.-J. Chung, S.-H. Yang, G.-S. Hong and K.-S. Oh

Abstract

The green body and dense substrate of indium tin oxide was joined by uniaxially pressing at 0.3 MPa at 1300°C to test the restoring of the eroded part of transparent conducting oxide target. The green body was sintered to 98% of theoretical density under the suppression of shrinkage along the boundary below 5%. The boundary between two parts was free of pore but could be recognized from the difference in grain sizes. The joined part had the virtually same density with the substrate, but the grain size was less than one fifth compared with that of substrate.

Open access

J. Cheng, X.P. Zou, G. Zhu, M. F. Wang, Y. Su, G.Q. Yang and X. M. Lü

In this paper, the effects of position of substrates in flames, preparation time, stability of flames and catalyst precursors on the synthesis of carbon nanofibers (CNFs) by ethanol catalytic combustion (ECC) were investigated. For investigating the effects of these influence factors on the synthesis of CNFs, several sets of controlled experiments were performed, such as preparation experiments with different position of substrates in flames, different preparation time, stable and unstable flames, and different catalyst precursors. In our experiments, the catalyst precursors were iron nitrate, cobalt nitrate, nickel nitrate, and iron chloride, cobalt chloride, nickel chloride. The as-synthesized products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Our results indicate that the optimal position of substrates in flames is more than 1cm and less than 2.5cm, the optimal preparation time is more than 5min and less than 30min for massive yield, stable flames would be tent to synthesize CNFs with mainly single-type morphology and could improve the graphitization of CNFs, and the catalyst precursors obviously have effects on the synthesis of CNFs.