Search Results

1 - 3 of 3 items :

  • Author: Iwona Radkowska x
Clear All Modify Search

Abstract

A field experiment was conducted in the years 2012-2014, at the Plant Breeding Station in Polanowice near Krakow (220 m a.s.l.). The aim of the study was to investigate the effect of silicon (Si) on seed yield and quality of timothy-grass (Phleum pratense L.) of “Egida” cultivar. A univariate field experiment in randomized block design was repeated four times, and the area of the experimental plots was 10 m2. The soil on the experimental plots was a loess derived haplic phaeozem of bonitation class I. The experimental factor was spraying with a silicon formulation in the form of Optysil® fertilizer at three doses: 0.2, 0.5 and 0.8 dm3·ha−1. During the growing season, the plants were evaluated for their height, leaf greenness index (SPAD) and general condition. After harvesting, the seed yield and quality were assessed. The study revealed a significant effect of silicon on plant height, general condition and yield and quality of the seeds. The plants treated with silicon showed lower infestation rate with pathogens and pests than the control ones. Foliar fertilization with the highest dose of the silicon formulation (0.8 dm3·ha−1) caused a significant increase in seed yield as compared with control. The effects were also satisfactory in the plants treated with the formulation at 0.5 dm3·ha−1. The seeds obtained from silicon-treated plants were bigger, as revealed by the weight of 1000 seeds, and exhibited higher germination ability than the control seeds.

Abstract

Titanium is one of a plant biostimulators. It stimulates life processes, growth and development, as well as affects physiological and biochemical pathways, often increasing biomass production and enhancing yield. An open field experiment was conducted in the years 2011-2013 in Polanowice, Poland to investigate the effects of titanium foliar fertilization on the growth of timothy grass (Phleum pratense L.). This single-factor, randomized block design study was performed in four replicates on research plots with the area of 10 m2 each. The substrate was black loess soil (chernozem) typical for top class farmland. Titanium fertilization via leaf spray was performed with a water solution of Tytanit® at three doses of 0.2, 0.4, and 0.8 dm3 · ha−1. Foliar fertilization with the highest dose of Tytanit® significantly increased seed yield, thousand grain weight and germination capacity. Moreover, the middle dose of Tytanit® (0.4 dm3 · ha−1) was enough to observe a positive effect on the sample.

Abstract

The purpose of the experiment was to assess the effect of application of zinc ammonium acetate (ZAA) on yielding, morphological features and on selected vegetation indices of timothy cv. ‘Owacja’ cultivated for seeds. Zinc ammonium acetate that has a biostimulatory effect was used foliar in the carried out experiment. The experiment was conducted in the years 2015-2017 at the experimental station in Prusy near Krakow, a part of the Experimental Station of the Institute of Crop Production of the University of Agriculture in Krakow. The field experiment was set up in a randomized block design, in four replications, and the area of experimental plots was 10 m2. Degraded Chernozem formed from loess (classified to the first class quality soil) was present on the experimental area. The experiment consisted in applying ZAA as spray at three doses: 0.214, 0.267 and 0.400 kg(ZnNH4(CH3CO2)3)/ha. Based on the obtained preliminary results, it was found that application of foliar activator in a higher dose (0.400 kg/ha) caused a significant (p ≤ 0.05) increase in seed yield, 1000-seed weight and in germination capacity in relation to the control. Improvement in morphological properties was also observed. Leaf greenness index (SPAD) was also determined. Its highest value was found in plants from the treatment where the highest dose of the zinc ammonium acetate was applied. Seeds obtained from plants treated with ZAA were riper (ripeness was measured with 1000-seed weight) and had higher germination capacity in relation to control treatments.