Search Results

1 - 2 of 2 items :

  • Author: Igor Kochegarov x
  • Information Technology x
  • Artificial Intelligence x
  • Software Development x
  • Project Management x
Clear All Modify Search


A number of PCB defects, though having passed successfully the defect identification procedure, can potentially grow into critical defects under the influence of various external and (or) internal influences. The complex nature of the development of defects leading to PCB failures demands developing and updating the data measuring systems not only for detection but also for the prediction of future development of PCB defects considering the external influences. To solve this problem, it is necessary to analyse the models of defect development, which will allow predicting the defect growth and working out the mathematical models for their studies.

The study uses the methods of system analysis, theory of mathematical and imitation modelling, analysis of technological systems. The article presents four models for determining the theoretical stress concentration factor for several types of common defects, considering the strength loss of PCB elements. For each model the evaluation of parameters determining its quality is also given. The formulas are given that link the geometry of defects and the stress concentration factor, corresponding to four types of defects. These formulas are necessary for determining the number of cycles and time to failure, fatigue strength coefficient.

The chosen models for determining the values of the stress concentration factor can be used as a database for identifying PCB defects. The proposed models are used for software implementation of the optical image inspection systems.


The relevance and nature of a new technology for measurement of vibrational displacement of a material point through normal toward the object plane are stated in the article. This technology provides registration and processing of images of a round mark or a matrix of round marks, which are applied to the surface of a control object. A measuring signal here is the module of radius increment of the round mark image at vibrational blurring of this image. The method for calculation of the given error of measurements, as a function of a number of pixels of the round mark image, has been developed and proven in the present research. The results of pilot studies are given. Linearity of transformation of the measured size into a measuring signal has been proven. The conditions of a technical compromise between the field of view area of a recording device during distribution measurement of vibrational displacements along the surface of a control object, and the accuracy of this measurement are determined. The results are illustrated with numerical examples of calculations of the given error of measurements in the set field of view and the one at the given maximum set error of measurements.